Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201701827 | DOI Listing |
Small Methods
January 2025
Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.
The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
Research into flexible solid-state supercapacitors for wearable electronics focuses on achieving high performance and safety. Gel polymer electrolytes (GPEs) are preferred over fully solid-state electrolytes due to their better ionic conductivity while addressing safety concerns associated with liquid electrolytes. This study aims to enhance high-performance gel polymer electrolytes (HP-GPEs) by improving the ion transfer rate of polyvinyl alcohol (PVA) with sulfonated hexagonal boron nitride (known as white-graphene) and exploring how rheology influences ion-conduction within HP-GPEs.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China. Electronic address:
With the rapid development of wearable electronic devices, flexible supercapacitors have gained strong interest. However, traditional sandwich supercapacitors have weak interfacial binding, resulting in high interface resistance and poor deformability. Herein, a self-healing integrated supercapacitor based on a polyacrylic acid-polyisodecyl methacrylate-CoSO gel polymer electrolyte (GPE) was developed.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:
Nanotechnology
January 2025
Department of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey.
Supercapacitors are energy storage devices with long cycle life that can harvest and deliver high power. This makes them attractive for a broad range of applications including flexible and lightweight wearable consumer electronics. In this work, we fabricate flexible solid-state supercapacitors with improved capacitance and cycle life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!