AI Article Synopsis

  • The study focuses on a unique potassium silanide structure, where unexpected bonding occurs.
  • Instead of a typical contact ion pair between potassium and silicon, potassium cation binds to an aromatic ring.
  • The silanide interacts with CH bonds from surrounding crown ether molecules, highlighting strong soft-soft interactions.

Article Abstract

This crystallographic and computational study describes an unusual potassium silanide structure. A contact ion pair is expected in the solid state between potassium and silicon, yet the potassium cation binds an aromatic ring and the anionic silanide interacts with CH bonds on neighboring crown ether molecules. These structure-bonding phenomena are attributed to strong soft-soft interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201704217DOI Listing

Publication Analysis

Top Keywords

ion pair
8
cooperative noncovalent
4
noncovalent interactions
4
interactions induce
4
induce ion
4
pair separation
4
separation diphenylsilanides
4
diphenylsilanides crystallographic
4
crystallographic computational
4
computational study
4

Similar Publications

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Colloidal ionogels: Controlled assembly and self-propulsion upon tunable swelling.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:

Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Free ions in organic solvents of low polarity would be valuable tools for the activation of low-reactivity substrates. However, the formation of unreactive ion pairs at concentrations relevant for synthesis has prevented the success of this concept so far. On the example of highly nucleophilic pyridinamide phosphonium salts in dichloromethane, we show that asymmetric aggregation offers a solution to this general problem.

View Article and Find Full Text PDF

We present two novel antimony(III)-based tellurite sulfate crystals, Sb(TeO)(SO)-1̅ (I) and Sb(TeO)(SO)-2/ (II), synthesized using a dual lone pair strategy that incorporates Sb and Te ions into a sulfate framework. This approach significantly enhances the birefringence of these compounds, with values of 0.11 and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!