Activity-dependent neuroprotective protein (ADNP), discovered in our laboratory in 1999, has been characterized as a master gene vital for mammalian brain formation. ADNP de novo mutations in humans result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome (Helsmoortel-Van Der Aa). One of the most important cellular processes associated with ADNP is the autophagy pathway, recently discovered by us as a key player in the pathophysiology of schizophrenia. In this regard, given the link between the microtubule and autophagy systems, the ADNP microtubule end binding protein motif, namely, the neuroprotective NAP (NAPVSIPQ), was found to enhance autophagy while protecting microtubules and augmenting ADNP's association with both systems. Thus, linking autophagy and ADNP is proposed as a major target for intervention in brain diseases from autism to Alzheimer's disease (AD) and our findings introduce autophagy as a possible novel target for treating schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.201700054 | DOI Listing |
Biosci Biotechnol Biochem
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Pharmacology, SPP School of Pharmacy & Technology Management, Mumbai, India. Electronic address:
The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China; Institute of Clinical Neurology, Fujian Medical University, No.29 Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China. Electronic address:
Background: The effect of statins use on the incidence of Alzheimer's disease (AD) is still under debate, and it could be modified by a series of factors.
Objectives: We aimed to examine the association of statins use with the risk of cognitive impairment and AD, and assess the moderating roles of genetic susceptibility and other individual-related factors.
Design: A longitudinal study was conducted from the UK Biobank where individuals completed baseline surveys (2006-2010) and were followed (mean follow-up period: 9 years).
J Prev Alzheimers Dis
February 2025
Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:
Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.
Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!