Background: Profound apprehension towards safety of irradiated food has remained a major cause behind tardy acceptance of this technology although it has immense socio-economic potential. Generation of in-depth scientific evidence will help to refute these apprehensions. With this prospective, the present study was undertaken where safety of various irradiated (D up to 25 kGy) foods was evaluated through long-term exposure studies in models including human lymphoblast TK6 cell line (100 generations) and Escherichia coli MG1655 cells (exclusive sub-culturing in irradiated food medium for 3000 generations). Additionally, the Ames test, micronucleus test, comet assay, DNA sequencing and restriction profiling of phagemid DNA from E. coli cells sub-cultured in irradiated food medium were also performed.

Results: No induced mutagenesis was observed in these cells during long-term sub-culturing in various irradiated food medium. Also no change was observed in profiles of comet, micronucleus, restriction digestion, random amplification of polymorphic DNA as well as DNA sequences. The latter also ruled out the possibility of any silent mutation.

Conclusion: Findings of the current study thus provided credible molecular evidence supporting the safety of irradiated foods. This would be helpful in confidence building among consumers, entrepreneurs, and strengthening the overall food irradiation program to achieve 'food safety' and 'security'. © 2017 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.8686DOI Listing

Publication Analysis

Top Keywords

irradiated food
20
sub-culturing irradiated
12
safety irradiated
12
food medium
12
induced mutagenesis
8
human lymphoblast
8
irradiated
7
food
6
mutagenesis human
4
lymphoblast cell
4

Similar Publications

In this study, minced turkey meat samples were subjected to electron-beam irradiation with dosages of 0, 1.5, 3, and 5 kGy, and then microbial (mesophilic and psychrotrophic bacteria), physiochemical (pH, water activity [a], thiobarbituric acid reactive substances [TBARS], and peroxide value [PV]), and sensory (color, odor, texture, and overall acceptability) analyses were performed at 0 and 6 months of freezing storage (-18°C). Results showed that by 5 kGy irradiation and freezing treatments, the counts of psychrotrophic and mesophilic bacteria reduced remarkably ( < 0.

View Article and Find Full Text PDF

Preparation of a biodegradable packaging film by konjac glucomannan/sodium alginate reinforced with nitrogen-doped carbon quantum dots from crayfish shell for crayfish meat preservation.

Int J Biol Macromol

January 2025

Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China. Electronic address:

The development of biomass material is an important approach to alleviating the excessive using of plastic packaging, by which the product could be more environmentally friendly and lower toxicity. In this study, we developed a biodegradable photodynamic antibacterial food packaging film using nitrogen-doped carbon quantum dots (N-CQDs) synthesized from crayfish shells, combined with konjac glucomannan (KGM) and sodium alginate (SA). Casting method was used to prepare the composite film and results indicated that incorporation of N-CQDs significantly enhanced the mechanical and barrier properties of the film by reducing the number of micropores.

View Article and Find Full Text PDF

Photocatalytic production and biological activity of D-arabino-1,4-lactone from D-fructose.

Sci Rep

January 2025

Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan.

Lactones play crucial roles in various fields, such as pharmaceuticals, food, and materials science, due to their unique structures and diverse biological activities. However, certain lactones are difficult to obtain in large quantities from natural sources, necessitating their synthesis to study their properties and potential. In this study, we investigated the photocatalytic conversion of D-fructose, a biomass-derived and naturally abundant sugar, using a TiO photocatalyst under light irradiation in ambient conditions.

View Article and Find Full Text PDF

Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.

View Article and Find Full Text PDF

Removal of ochratoxin A from wine by adsorption-photocatalytic synergy of tubular TiO/SiO/g-CN: Mechanistic insights and degradation pathways.

Food Chem

January 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Consumption of contaminated wines is a significant source of ochratoxin A (OTA) intake in humans, yet existing techniques for OTA removal are inadequate. This study constructs a TiO/SiO/g-CN catalyst (TiSiMs-TCN) with a tubular structure, capable of efficiently removing OTA from both simulated and real wines under visible light irradiation. The results of experiments, characterizations, and theoretical calculations demonstrate that the incorporation of silica enhances the adsorption capacity for OTA, and the tubular structure improves the catalyst's photoelectric properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!