Apicomplexan actin polymerization depends on nucleation.

Sci Rep

Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.

Published: September 2017

Filamentous actin is critical for apicomplexan motility and host cell invasion. Yet, parasite actin filaments are short and unstable. Their kinetic characterization has been hampered by the lack of robust quantitative methods. Using a modified labeling method, we carried out thorough biochemical characterization of malaria parasite actin. In contrast to the isodesmic polymerization mechanism suggested for Toxoplasma gondii actin, Plasmodium falciparum actin I polymerizes via the classical nucleation-elongation pathway, with kinetics similar to canonical actins. A high fragmentation rate, governed by weak lateral contacts within the filament, is likely the main reason for the short filament length. At steady state, Plasmodium actin is present in equal amounts of short filaments and dimers, with a small proportion of monomers, representing the apparent critical concentration of ~0.1 µM. The dimers polymerize but do not serve as nuclei. Our work enhances understanding of actin evolution and the mechanistic details of parasite motility, serving as a basis for exploring parasite actin and actin nucleators as drug targets against malaria and other apicomplexan parasitic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610305PMC
http://dx.doi.org/10.1038/s41598-017-11330-wDOI Listing

Publication Analysis

Top Keywords

parasite actin
12
actin
9
apicomplexan actin
4
actin polymerization
4
polymerization depends
4
depends nucleation
4
nucleation filamentous
4
filamentous actin
4
actin critical
4
critical apicomplexan
4

Similar Publications

Objective: The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms.

View Article and Find Full Text PDF

is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP) signaling in the actin-dependent pathogenicity of . This study further demonstrated that iron transiently regulated phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor Arf220, facilitating co-trafficking to the plasma membrane, crucial for PIP production.

View Article and Find Full Text PDF

Bending stiffness of Toxoplasma gondii actin filaments.

J Biol Chem

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520. Electronic address:

Article Synopsis
  • Actin is crucial for the Apicomplexan parasite Toxoplasma gondii, supporting key processes like invasion and organelle inheritance, and its unique properties enable rapid treadmilling compared to vertebrate actin.
  • Recent findings suggest that although T. gondii actin (TgAct1) has weaker interactions at its D-loop, this does not significantly impair its bending stiffness or stability, making it similar to vertebrate actin.
  • Structural analysis shows that despite the differences at the D-loop, TgAct1 filaments maintain stabilizing features, indicating a mechanism where weak D-loop interactions affect subunit addition at the ends but not within the filament itself.
View Article and Find Full Text PDF

Angiogenesis as a Survival Mechanism in Heartworm Disease: The Role of Fructose-Bisphosphate Aldolase and Actin from in an In Vitro Endothelial Model.

Animals (Basel)

November 2024

Zoonotic Diseases and One Health Group, Faculty of Pharmacy, Biomedical Research Institute of Salamanca (IBSAL), Centre for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, 37007 Salamanca, Spain.

Heartworm disease, caused by is a vector-borne zoonotic disease, (mainly affecting canids and felids) causing chronic vascular and pulmonary pathology in its early stages, which worsens with parasite load and/or death of adult worms in the pulmonary artery or right heart cavity, and can be fatal to the host. Angiogenesis is a mechanism by which new blood vessels are formed from existing ones. The aim of this work was to study the effect of two molecules of the excretory/secretory antigen (DiES) on the angiogenic process, taking into account that this antigen is able to interact with this process and use it as a survival mechanism.

View Article and Find Full Text PDF

During host infection, and related unicellular parasites move using gliding, which differs fundamentally from other known mechanisms of eukaryotic cell motility. Gliding is thought to be powered by a thin layer of flowing filamentous (F)-actin sandwiched between the plasma membrane and a myosin-covered inner membrane complex. How this surface actin layer drives the various gliding modes observed in experiments-helical, circular, twirling and patch, pendulum or rolling-is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!