Cellular positioning towards the surface of bacterial colonies and biofilms can enhance dispersal, provide a selective advantage due to increased nutrient and space availability, or shield interior cells from external stresses. Little is known about the molecular mechanisms that govern bacterial positioning. Using the type IV pilus (T4P) of Neisseria gonorrhoeae, we tested the hypothesis that the processes of phase and antigenic variation govern positioning and thus enhance bacterial fitness in expanding gonococcal colonies. By independently tuning growth rate and T4P-mediated interaction forces, we show that the loss of T4P and the subsequent segregation to the front confers a strong selective advantage. Sequencing of the major pilin gene of the spatially segregated sub-populations and an investigation of the spatio-temporal population dynamics was carried out. Our findings indicate that pilin phase and antigenic variation generate a standing variation of pilin sequences within the inoculation zone, while variants associated with a non-piliated phenotype segregate to the front of the growing colony. We conclude that tuning of attractive forces by phase and antigenic variation is a powerful mechanism for governing the dynamics of bacterial colonies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610331 | PMC |
http://dx.doi.org/10.1038/s41598-017-12472-7 | DOI Listing |
BMJ Oncol
February 2024
Division of Cancer Sciences, The University of Manchester, Manchester, UK.
Objective: To review the efficacy and safety of low-dose versus standard-dose enzalutamide, apalutamide or darolutamide treatment for metastatic prostate cancer.
Methods And Analysis: Keyword searches in MEDLINE and EMBASE up to 1 June 2023, with forward and backward citation searches of potentially relevant studies. Studies were included if primary outcome data were reported for patients with metastatic prostate cancer who had received reduced doses of enzalutamide, apalutamide or darolutamide.
J Clin Oncol
January 2025
Center for Cell Engineering, Sloan Kettering Institute, New York, NY.
Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) X protein (HBx) is a key factor for regulating viral transcription and replication. We recently characterized homeobox protein MSX-1 (MSX1) as a host restriction factor that inhibits HBV gene expression and genome replication by directly binding to HBV enhancer II/core promoter (EnII/Cp) and suppressing its promoter and enhancer activities. Notably, HBx expression was observed to be repressed more drastically by MSX1 compared to other viral antigens.
View Article and Find Full Text PDFPLoS One
January 2025
Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania.
Several interventional strategies have been implemented in malaria endemic areas where the burden is high, that include among others, intermittent preventive treatment (IPT), a tactic that blocks transmission and can reduce disease morbidity. However, the implementation IPT strategies raises a genuine concern, intervening the development of naturally acquired immunity to malaria which requires continuous contact with parasite antigens. This study investigated whether dihydroartemisinin-piperaquine (DP) or artesunate-amodiaquine (ASAQ) IPT in schoolchildren (IPTsc) impairs IgG reactivity to six malaria antigens.
View Article and Find Full Text PDFMAbs
December 2025
Ichnos Glenmark Innovation, New York, NY, USA.
ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!