Folates (B9 vitamins) are essential cofactors in one-carbon metabolism. Since C1 transfer reactions are involved in synthesis of nucleic acids, proteins, lipids, and other biomolecules, as well as in epigenetic control, folates are vital for all living organisms. This work presents a complete study of a plant (dihydrofolate reductase-thymidylate synthase) gene family that implements the penultimate step in folate biosynthesis. We demonstrate that one of the DHFR-TS isoforms (DHFR-TS3) operates as an inhibitor of its two homologs, thus regulating DHFR and TS activities and, as a consequence, folate abundance. In addition, a novel function of folate metabolism in plants is proposed, i.e., maintenance of the redox balance by contributing to NADPH production through the reaction catalyzed by methylenetetrahydrofolate dehydrogenase, thus allowing plants to cope with oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728131PMC
http://dx.doi.org/10.1105/tpc.17.00433DOI Listing

Publication Analysis

Top Keywords

dihydrofolate reductase/thymidylate
4
reductase/thymidylate synthase
4
synthase fine-tunes
4
folate
4
fine-tunes folate
4
folate status
4
status controls
4
controls redox
4
redox homeostasis
4
homeostasis plants
4

Similar Publications

Comparative genomics of Plasmodium yoelii nigeriensis N67 and N67C: genome-wide polymorphisms, differential gene expression, and drug resistance.

BMC Genomics

November 2024

Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.

Background: The study of rodent malaria parasites has significantly advanced our understanding of malaria parasite biology and host responses to parasite infections. There are four well-characterized rodent malaria parasite species (Plasmodium yoelii, P. chabaudi, P.

View Article and Find Full Text PDF

The gastrointestinal disease cryptosporidiosis, caused by the genus , is a common cause of diarrheal diseases in children, particularly in developing countries and frequently fatal in immunocompromised individuals. ()-specific bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) has been a molecular target for inhibitor design. (.

View Article and Find Full Text PDF

Methotrexate (MTX), an antimetabolite agent, is widely used for acute lymphoblastic leukemia treatment, despite its association with significant organ dysfunction. Astaxanthin (AST) is a natural carotenoid which has recently been emerged as a promising anti-tumor and anti-inflammatory agent. In this study, we aimed to evaluate the effectiveness of astaxanthin and low-dose methotrexate co-treatment in acute lymphoblastic leukemia cell line.

View Article and Find Full Text PDF

A new superior bacteria complementation model was achieved for testing antifolate compounds and investigating antifolate resistance in the dihydrofolate reductase (DHFR) enzyme of the malaria parasite. Earlier models depended on the addition of trimethoprim (TMP) to chemically suppress the host Escherichia coli (Ec) DHFR function. However, incomplete suppression of EcDHFR and potential interference of antibiotics needed to maintain plasmids for complementary gene expression can complicate the interpretations.

View Article and Find Full Text PDF

Enzoology: understanding enzyme interactions and epistasis in the cell.

Trends Biochem Sci

October 2024

Department of Biology, Massachusetts Institute of Technology, MA, USA. Electronic address:

Recent work from Nguyen et al. unveils massively parallel measurements of epistatic interactions between two enzymes, dihydrofolate reductase and thymidylate synthase, in their natural cellular context. Almost 3000 mutations of DHFR in three TYMS backgrounds reveal a complex interaction network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!