Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of iron oxide nanoparticles [IONPs] in biomedical research is progressively increasing, leading to the rapid development of biocompatible and surface modified IONPs. However, there is still a need of information pertaining to its cellular and acute toxicity profile. This work reports the synthesis of β-cyclodextrin coated iron oxide nanoparticles (βCD-IONPs) and their characterization using spectroscopic (FT-IR), thermal (TGA) and surface analysis (TEM, SEM, BET and Zeta potential). All the characterization techniques displayed the synthesis of well dispersed, rod shaped βCD-IONPs of 45nm. Time dependent cellular uptake of these nanoparticles was also evaluated using Prussian blue staining. Further, cytocompatibility analysis was executed in mouse fibroblast cell line (NIH 3T3) using MTT and LDH assays, respectively which did not show any cytotoxic indications of βCD-IONPs. Finally, acute toxicity analysis was carried out in female Wistar rats according to OECD guidelines 420. Rats were exposed to the highest dose (2000mg/kg) of βCD-IONPs along with control and observed for 14days. After two weeks of administration, tissues and blood were collected and subjected to histopathological and biochemical analysis (SGOT, SGPT and ALP). Animals were sacrificed and gross necropsy was carried out. It has been shown that βCD-IONPs does not have any significant toxic effect at the cellular level. Thus, this study provides new perspectives for future biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.09.067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!