A new low-flow-rate (0.5L/min) single-nozzle impactor for the concentration of dilute aerosol particles with selected pharmaceutical applications is described in this paper. The impactor can be configured up to 11 stages with a wide range of cutoff diameters from 0.6μm to 21.1μm, enabling convenient sampling of inhalable drug particles from inhalation devices and drug production processes. Its unique single-nozzle design and removable impaction plate allow direct sample transfer for subsequent compositional, morphological, solid-state, and other analysis. Agreement between the measured size distribution of fluticasone propionate particles actuated from commercial pMDI Flixotide 250 Evohaler and reported data in the literature verified that the impactor stages have accurate cutoff diameters as designed. The multi-stage configuration of the impactor allows rapid separation of polydisperse aerosol particles into different size classes for further characterization. Overlapping of the Raman spectra of the double-component powders from the Seretide 250 pMDI collected using two different methods demonstrated the applicability of the impactor for a representative sampling of multi-component aerosol particles for bulk composition analysis. A time-dependent and size-dependent stability study was conducted consuming only a single sample canister with 80mg of amorphous indomethacin particles suspended in HFA-134a. It was found that amorphous indomethacin particles converted to the γ crystalline polymorph upon storage at 45°C and that the crystallization rate is strongly size dependent. With its highly effective aerosol collection capability and accurate cutoff diameters for aerosol classification, the impactor will have various applications in the pharmaceutical industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2017.09.047 | DOI Listing |
Int J Nanomedicine
January 2025
School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
Objective: This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension.
Methods: The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier.
Appl Radiat Isot
January 2025
Department of Chemistry, Universitas Indonesia, Depok, 16424, Indonesia.
To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.
View Article and Find Full Text PDFInt J Hyg Environ Health
January 2025
Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.
Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!