Colorectal cancer: epigenetic alterations and their clinical implications.

Biochim Biophys Acta Rev Cancer

Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA. Electronic address:

Published: December 2017

Colorectal cancer (CRC) is a heterogeneous disease with distinct molecular and clinical features, which reflects the wide range of prognostic outcomes and treatment responses observed among CRC patients worldwide. Our understanding of the CRC epigenome has been largely developed over the last decade and it is now believed that among thousands of epigenetic alterations present in each tumor, a small subgroup of these may be considered as a CRC driver event. DNA methylation profiles have been the most widely studied in CRC, which includes a subset of patients with distinct molecular and clinical features now categorized as CpG island methylator phenotype (CIMP). Major advances have been made in our capacity to detect epigenetic alterations, providing us with new potential biomarkers for diagnostic, prognostic and therapeutic purposes. This review aims to summarize our current knowledge about epigenetic alterations occurring in CRC, underlying their potential future clinical implications in terms of diagnosis, prognosis and therapeutic strategies for CRC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757873PMC
http://dx.doi.org/10.1016/j.bbcan.2017.09.003DOI Listing

Publication Analysis

Top Keywords

epigenetic alterations
16
colorectal cancer
8
clinical implications
8
distinct molecular
8
molecular clinical
8
clinical features
8
crc patients
8
crc
7
epigenetic
4
cancer epigenetic
4

Similar Publications

Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains.

Sci Adv

January 2025

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.

Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.

View Article and Find Full Text PDF

Background: MicroRNAs have been linked to dementia. However, understanding their relation to cognition in the general population is required to determine their potential use for the detection and prevention of age-associated cognitive decline and preclinical dementia. Therefore, we examined the association of circulating microRNAs with cognitive performance in a population-based cohort and the possible underlying mechanisms.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.

View Article and Find Full Text PDF

Background: Aging is a time-dependent deterioration of physiological functions that occurs in both humans and animals. Within the brain, aging cells gradually become dysfunctional through a complex interplay of intrinsic and extrinsic factors, ultimately leading to behavioral deficits and enhanced risk of neurodegenerative diseases such as Alzheimer's disease (AD). The characteristics of normal aging are distinct from those associated with age-related diseases and it is important to understand the processes that contribute to this pathological divergence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!