Background: Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms.
Results: Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K, V and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways.
Conclusions: To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610471 | PMC |
http://dx.doi.org/10.1186/s12934-017-0779-5 | DOI Listing |
Sci Rep
January 2025
Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, CoochBehar, West Bengal, India.
This study aimed to assess the genetic basis and combining ability of 10 morphological traits in Indian mustard. The experiment involved eight parent lines and 28 crosses derived from a half-diallel mating design. Combining ability analysis is vital for identifying parents and hybrids with favorable genetic effects to enhance breeding efficiency.
View Article and Find Full Text PDFEur J Cancer
January 2025
Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany. Electronic address:
Background: Despite remarkable clinical efficacy, little is known about the system-wide immunological alterations provoked by PD1 blockade. Dynamics of quantitative immune composition and functional repertoire during PD1 blockade could delineate cohort-specific patterns of treatment response and therapy-induced toxicity.
Methods: We longitudinally assessed therapy-induced effects on the immune system in fresh whole blood using flow cytometry-based cell quantifications, accompanied by analyses of effector properties of all major immune populations upon cell-type specific stimulations.
Food Chem
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition; College of Food Science and Engineering, Ningbo University, Ningbo 315211, China. Electronic address:
To investigate the mechanism of Rhodotorula mucilaginosa on structural protein degradation and taste development of Jinhua ham, the effects of Rhodotorula mucilaginosa and Pichia kudriavzevii on proteolytic enzyme activities, surface hydrophobicity, myofibril microstructure, protein degradation, free amino acids and sensory attributes were investigated during the dry-ripening of Jinhua ham. The inoculation of Rhodotorula mucilaginosa EIODSF019 (RE) and Rhodotorula mucilaginosa XZY63-3 (RX) consistently exhibited higher proteolytic enzyme activities compared with Pichia kudriavzevii XS-5 (PK). The decrease of α-helix exposing more internal hydrophobic groups of myofibrillar proteins, contributed to higher surface hydrophobicity of RE compared with PK and RX.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of water-sediment regulation and eco-decontamination, Jinan, Shandong, PR China. Electronic address:
Ammonia assimilation is crucial in microbial nitrogen metabolism, and researching the impact of magnetic field (MF) on heterotrophic ammonia assimilation (HAA) contributes to improving nitrogen utilization and environmental remediation. This study systematically investigated the profound effects of MF stimulation on carbon and ammonia assimilation mechanisms in heterotrophic microorganisms. The dynamic responses of microbial carbon source metabolic efficiency and nitrogen source assimilation rates were quantitatively analyzed by designing a multidimensional stimulation environment of different nutrient levels (C/N 20, 25, 30) and MF intensities (0, 1, 20 mT).
View Article and Find Full Text PDFAm J Manag Care
January 2025
Department of Population Health Sciences, Weill Cornell Medicine, 575 Lexington Ave, 6th Floor, New York, NY 10022. Email:
Objectives: Medicaid is the largest payer of mental health (MH) services in the US, and more than 80% of its enrollees are covered by Medicaid managed care (MMC). States are required to establish quantitative network adequacy standards (NAS) to regulate MMC plans' MH care access. We examined the association between quantitative NAS and MH care access among Medicaid-enrolled adults and among those with MH conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!