A mixture of triethylamine and water is a lower critical solution temperature system that demixes (separates into individual phases) on heating. Differential scanning calorimetry has been applied to study the process of demixing in native and organically modified silica nanopores whose size varied from 4 to 30 nm. It has been found that in both types of nanopores, the temperature and enthalpy of demixing decrease significantly with decreasing the pore size. Isoconversional kinetic analysis has been utilized to determine the activation energy and pre-exponential factor of the process. It has been demonstrated that the depression of the transition temperature upon nanoconfinement is associated with acceleration of the process due to lowering of the activation energy. Nanoconfinement has also been found to lower the pre-exponential factor of the process that has been linked to a decrease in the molecular mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5003906 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!