Elevated blood homocysteine (Hcy) level is frequently observed in aged individuals and those with age-related vascular diseases. However, its effect on peripheral microcirculation is still not fully understood. Using zebrafish model, the degree of Hcy-induced peripheral microcirculation dysfunction is assessed in this study with a proposed dimensionless velocity parameter [Formula: see text], where [Formula: see text] and [Formula: see text] represent the peripheral microcirculation perfusion and the systemic perfusion levels, respectively. The ratio of the peripheral microcirculation perfusion to the systemic perfusion is largely decreased due to peripheral accumulation of neutrophils, while the systemic perfusion is relatively preserved by increased blood supply from subintestinal vein. Pretreatment with L-arginine attenuates the effects of Hcy on peripheral microcirculation and reduces the peripheral accumulation of neutrophils. Given its convenience, high reproducibility of the observation site, non-invasiveness, and the ease of drug treatment, the present zebrafish model with the proposed parameters will be used as a useful drug screening platform for investigating the pathophysiology of Hcy-induced microvascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601649 | PMC |
http://dx.doi.org/10.18632/oncotarget.16811 | DOI Listing |
Biogerontology
January 2025
Song Biotechnologies LLC., Baltimore, MD, 21030, USA.
Human populations are experiencing unprecedented growth and longevity with lingering knowledge gaps of the characteristics, mechanisms, and pathologies of senescence. Invasive measurements and long-term control conditions for longitudinal studies are infeasible, necessitating the need for surrogate animal models. Rats have short lifespans (2-3 years) with translatable cardiovascular systems, and Sprague Dawley microcirculatory preparations are key to studying the oxygen transport mechanisms critical to the loss of skeletal muscle function in aging.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.
The monitoring of peripheral circulation, as indicated by the capillary refill time, is a sensitive and accurate method of assessing the microcirculatory status of the body. It is a widely used tool for the evaluation of critically ill patients, the guidance of therapeutic interventions, and the assessment of prognosis. In recent years, there has been a growing emphasis on microcirculation monitoring which has led to an increased focus on capillary refill time.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland.
Severe COVID-19 is associated with a generalized inflammatory response leading to peripheral and organ perfusion disorders. : This study aimed to evaluate the usefulness of peripheral and organ perfusion assessments in the prediction of prognosis and mortality in patients with severe COVID-19. : In the first 48 h of hospitalization, peripheral perfusion (saturation, Finger Infrared Thermography-FIT; Capillary Refill Time-CRT), and the color Doppler renal cortex perfusion (RCP) were estimated in a group of 102 severe COVID-19 patients.
View Article and Find Full Text PDFLife (Basel)
December 2024
Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland.
This study aimed to analyze the relationship between cutaneous microcirculation reactivity, retinal circulation, macrocirculation function, and specific adhesion molecules in young patients with uncomplicated type 1 diabetes. Fifty-five patients with type 1 diabetes mellitus (T1DM), aged 8 to 18 years, were divided into subgroups based on skin microcirculation reactivity. The cutaneous microcirculatory vessels were considered reactive if post-test PORH coverage increased compared to pre-test coverage.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL 61801, USA.
Microcirculation is an essential system that regulates oxygen and nutrients to cells and tissues in response to various environmental stimuli and pathophysiological conditions. Diabetes mellitus can cause microvascular complications including nephropathy, neuropathy, and retinopathy. The pathogenesis of microvascular dysfunction in diabetes is associated with hyperglycemia and the result of an interplay of various factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!