Selenium (Se) is a critical element in thyroid function, and variable dietary Se intake influences immunity. Consequently, dietary Se could influence development of thyroid autoimmunity and provide an adjunct to treat autoimmune thyroid dysfunction. Nonobese diabetic (NOD).H2h4 mice spontaneously develop autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO). This mouse strain expressing a human thyroid-stimulating hormone receptor (TSHR) A-subunit transgene in the thyroid also develops pathogenic TSHR autoantibodies. In this report, we investigated whether dietary Se influences these immune processes. Male and female wild-type and transgenic NOD.H2h4 mice were maintained on normal-, low-, or high-Se (0.1, 0, or 1.0 mg/kg) rodent diets. After 4 months, Se serum levels were extremely low or significantly increased on 0 or 1.0 mg/kg Se, respectively. Varying Se intake affected Tg antibody (TgAb) levels after 2 (but not 4) months; conversely, TPO antibody (TPOAb) levels were altered by dietary Se after 4 (but not 2) months. These data correspond to the earlier development of TgAb than TPOAb in NOD.H2h4 mice. In males, TgAb levels were enhanced by high Se and in females by low Se intake. Se intake had no effect on pathogenic TSHR autoantibodies in TSHR transgenic NOD.H2h4 females. In conclusion, in susceptible NOD.H2h4 mice, we found no evidence that a higher dietary Se intake ameliorates thyroid autoimmunity by reducing autoantibodies to Tg, TPO, or the TSHR. Instead, our finding that low dietary Se potentiates the development of autoantibodies to Tg and TPO in females is consistent with reports in humans of an increased prevalence of autoimmune thyroiditis in low-Se regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695827 | PMC |
http://dx.doi.org/10.1210/en.2017-00275 | DOI Listing |
Thyroid
December 2021
Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
The pathogenesis of thyroiditis caused by immune-checkpoint inhibitors (ICIs) such as antiprogrammed death receptor-1 (PD-1) and anticytotoxic T lymphocyte antigen-4 (CTLA-4) is incompletely understood. To gain mechanistic insights, we developed a mouse model of ICI-related thyroiditis and assessed the clinical, hormonal, and cytokine profiles. Forty NOD-H2 mice, 112 days old at the start of the experiments, were divided into two sequential cohorts.
View Article and Find Full Text PDFFront Immunol
December 2021
Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.
While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim ( ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells.
View Article and Find Full Text PDFThyroid
August 2016
1 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water.
View Article and Find Full Text PDFClin Exp Immunol
June 2012
Department of Molecular Medicine, Atomic Bomb Disease Institute Division of Immunology, Endocrinology and Metabolism, Department of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Major histocompatibility complex (MHC) class I-restricted T cell epitopes are generated mainly by the immunoproteasome in antigen-presenting cells. Therefore, inhibition of activity of this proteolytic complex molecule is thought to be a potential treatment for cell-mediated autoimmune diseases. We therefore studied the efficacy of an immunoproteasome inhibitor, ONX 0914 (formerly PR-957), for the treatment of autoimmune thyroid diseases, including cell-mediated Hashimoto's thyroiditis and autoantibody-mediated Graves' hyperthyroidism using mouse models.
View Article and Find Full Text PDFEndocrinology
November 2011
Department of Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
Iodine-induced experimental autoimmune thyroiditis in the nonobese diabetic (NOD)-H2h4 mouse is a prototype of animal models of Hashimoto's thyroiditis in humans. Recent studies have shown the resistance to thyroiditis of NOD-H2h4 mice genetically deficient for either IL-17 or interferon (IFN)-γ, implicating both of T helper type 1 (Th1) and Th17 immune responses in disease pathogenesis. However, we hypothesized that robust induction of a single arm of effector T cells (either Th1 or Th17) might be sufficient for inducing thyroiditis in NOD-H2h4 mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!