Characterization of the changes in eicosanoid profiles of activated macrophages treated with 20(S)-ginsenoside Rg3.

J Chromatogr B Analyt Technol Biomed Life Sci

Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:

Published: October 2017

In this study, we used ultra-performance liquid chromatography coupled with tandem mass spectrometry to assess the levels of eicosanoids from RAW264.7 macrophages treated with lipopolysaccharides (LPS) and 20(S)-ginsenoside Rg3 (Rg3). The production of nitric oxide (NO) and the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in inflammatory macrophages treated with LPS. Rg3 treatment, however, decreased the levels of NO, TNF-α, and IL-6 in activated macrophages. Eicosanoids, known as major metabolites correlated with inflammation, have pro- or anti-inflammatory activities. For a detailed characterization of the eicosanoids altered by treatment with LPS and Rg3, the eicosanoids were profiled by multiple reaction monitoring. A total of 69 macrophage eicosanoids were analyzed and the profiling dataset was statistically analyzed. Principal component and hierarchical cluster analyses differentiated control cells from cells treated with LPS, Rg3, or LPS+Rg3 for 12 or 24h. Furthermore, 18 differentially regulated eicosanoids were found between macrophages treated with LPS for 24h and those treated with LPS+Rg3 for 24h (fold change>2, p value<0.05). These results indicate that Rg3 alters eicosanoid metabolism in activated macrophages treated with LPS. Furthermore, we also identified several eicosanoids correlated with the anti-inflammatory activity of Rg3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2017.09.002DOI Listing

Publication Analysis

Top Keywords

macrophages treated
16
treated lps
12
lps rg3
12
activated macrophages
8
20s-ginsenoside rg3
8
lps+rg3 24h
8
treated
6
rg3
6
eicosanoids
6
macrophages
5

Similar Publications

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Abdominal aortic aneurysm is a potentially fatal vascular inflammatory disease characterized by infiltration of various inflammatory cells.The GABA-A receptor is expressed in many inflammatory cells such as macrophages and T cells and has anti-inflammatory and antioxidant effects. Therefore, the GABA-A receptor may become a potential therapeutic target for abdominal aortic aneurysms.

View Article and Find Full Text PDF

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Restorative Effects of Short-Chain Fatty Acids on Corneal Homeostasis Disrupted by Antibiotic-Induced Gut Dysbiosis.

Am J Pathol

December 2024

International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China. Electronic address:

The gut microbiota plays a crucial regulatory role in various physiological processes, yet its impact on corneal homeostasis remains insufficiently understood. Here, we investigate the effects of antibiotic-induced gut dysbiosis (AIGD) and germ-free (GF) conditions on circadian gene expression, barrier integrity, nerve density, and immune cell activity in the corneas of mice. Through RNA sequencing, we found that both AIGD and GF conditions significantly disrupted the overall transcriptomic profile and circadian transcriptomic oscillations in the cornea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!