Objective: Photobiomodulation (PBM) can modulate the proliferation of some types of stem cells. However, few reports have addressed the effects of PBM delivered by light-emitting diode (LED) on stem cells obtained from the pulp tissue of deciduous teeth. The aim of the present study was to investigate the effect of PBM delivered by red LED (630 nm, 75 mW, 37 mW/cm) with different radiant exposures on the cell cycle, mitochondrial membrane potential, and senescence of stem cells from human exfoliated deciduous teeth (SHED).
Materials And Methods: Cultures were irradiated with LED (2, 4, 8, 16, and 32 J/cm). After 24 h, the cell cycle and mitochondrial membrane potential of the cultures were evaluated using flow cytometry. Nonirradiated cultures served as control.
Results: Cultures irradiated with 16 J/cm had higher percentages of cells in the synthesis phase than control cultures (p < 0.05), and no significant differences were found regarding the percentage of cells with viable mitochondria between irradiated and control cultures. No significant difference in cell senescence was found between control cultures and cultures irradiated with 2 or 16 J/cm.
Conclusions: LED irradiation at 630 nm (37 mW/cm, 75 mW) with radiant exposure of 16 J/cm was capable of inducing a proliferative response in stem cells from the pulp tissue of deciduous teeth without affecting mitochondrial function or inducing senescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/pho.2017.4279 | DOI Listing |
Neoplasia
January 2025
Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.
Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.
View Article and Find Full Text PDFPLoS One
January 2025
LP2N, Laboratoire Photonique Numérique et Nanosciences, University Bordeaux, Talence, France.
Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.
View Article and Find Full Text PDFStem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.
Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!