A significant effort is currently being invested to improve the electrochemical performance of classical lithium-ion batteries (LIBs) or to accelerate the advent of new chemistry-based post-LIBs. Regardless of the governing chemistry associated with charge storage, stable electrode-electrolyte interface and wet-adhesion among the electrode particles are universally desired for rechargeable batteries adopting liquid electrolytes. In this regard, recent studies have witnessed the usefulness of mussel-inspired polydopamine or catechol functional group in modifying the key battery components, such as active material, separator, and binder. In particular, the uniform conformal coating capability of polydopamine protects active materials from unwanted side reactions with electrolytes and increases the wettability of separators with electrolytes, both of which significantly contribute to the improvement of key battery properties. The wet-adhesion originating from catechol functional groups also largely increases the cycle lives of emerging high-capacity electrodes accompanied by huge volume expansion. This review summarizes the representative examples of mussel-inspired approaches in rechargeable batteries and offers central design principles of relevant coating and adhesion processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b08495 | DOI Listing |
Chem Commun (Camb)
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
Electrically rechargeable zinc-air batteries (ZABs) are emerging as promising energy storage devices in the post-lithium era, leveraging the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathodes. Efficient bifunctional oxygen electrocatalysts, capable of catalyzing both the ORR and OER, are essential for the operation of rechargeable ZABs. Traditional Pt- and RuO/IrO-based catalysts are not ideal, as they lack sufficient bifunctional ORR and OER activity, exhibit limited long-term durability, require high overpotentials and are expensive.
View Article and Find Full Text PDFChem Sci
January 2025
Materials Science and Engineering Program, The Graduate School, Florida State University 2005 Levy Ave. Tallahassee FL 32310 USA
Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
Mn-containing sodium superionic conductor (NASICON) compounds have shown considerable potential as cathode for sodium-ion batteries (SIBs) owing to higher working voltage (V/V: 3.9 V), lower cost, and lower toxicity compared to full vanadium-based NASICON NaV(PO). Taking NaVMn(PO) (NVMP) as an example, its practical application is still restricted by poor electronic conductivity, sluggish intrinsic Na diffusion, and poor high-voltage stability.
View Article and Find Full Text PDF"The most exciting thing about my research is finding the next safe and reliable battery technology…. I recharge my batteries by fully 'discharging' first, i.e.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.
Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!