The entrance channel complex in the exothermic OH + CH → HO + CH reaction has been isolated in helium nanodroplets following the sequential pick-up of the hydroxyl radical and methane. The a-type OH stretching band was probed with infrared depletion spectroscopy, revealing a spectrum qualitatively similar to that previously reported in the gas phase, but with additional substructure that is due to the different internal rotation states of methane (j = 0, 1, or 2) in the complex. We fit the spectra by assuming the rotational constants of the complex are the same for all internal rotation states; however, subband origins are found to decrease with increasing j. Measurements of deuterated complexes have also been made (OD-CH, OH-CD, and OD-CD), the relative linewidths of which provide information about the flow of vibrational energy in the complexes; vibrational lifetime broadening is prominent for OH-CH and OD-CD, for which the excited OX stretching state has a nearby CY stretching fundamental (X, Y = H or D).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b07906 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
In recent years, aqueous zinc-ion batteries (ZIBs) have shown considerable promise in the energy storage sector, attributed to their inherent high safety and cost-effectiveness. ZnVO(OH)·2HO (ZVO) has emerged as a promising candidate for Zn storage in recent years, owing to its exceptional structural stability that endows it with an excellent cycle life. However, an unsatisfactory rate performance is a limiting factor for its development in ZIBs.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.
View Article and Find Full Text PDFMolecules
December 2024
Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
Ab initio calculations of cross sections for electron capture by protons in collisions with CO are carried out at energies between 100 eV/u and 50 keV/u, employing a semiclassical method within the Franck-Condon framework. The scattering wave function is expanded in a set of ab initio electronic wave functions of the HCO supermolecule. The calculation is performed on several trajectory orientations to obtain orientation-averaged total cross sections.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China.
E2 elimination and SN2 substitution reactions are of central importance in preparative organic synthesis due to their stereospecificity. Herein, atomistic dynamics of a prototype reaction of ethyl chloride with hydroxide ion are uncovered that show strikingly distinct features from the case with fluoride anion. Chemical dynamics simulations reproduce the experimental reaction rate and reveal that the E2 proceeding through a direct elimination mechanism dominates over SN2 for the hydroxide ion reaction.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices. Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels, has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!