Since the discovery of the CRISPR/Cas system and its in vivo application for site-specific targeted mutagenesis, this technique is wildly used in a great variety of organisms, such as many plant species. Commonly used for this application is the Cas9 enzyme from Streptococcus pyogenes. Here, we describe the application of two Cas9 orthologs from Streptococcus thermophilus and Staphylococcus aureus for targeted non-homologous end-joining mediated mutagenesis in Arabidopsis thaliana. With both orthologs, we could show efficient inheritance of the induced mutations. As both Cas9 orthologs are smaller in size than the enzyme of S. pyogenes and as the Protospacer adjacent motifs (PAMs) differ between all orthologs, they are attractive alternative tools for genome engineering in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7286-9_27 | DOI Listing |
Mol Med
January 2025
Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.
View Article and Find Full Text PDFUnlabelled: The rapid growth that occurs during larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth.
View Article and Find Full Text PDFStructure
January 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea. Electronic address:
CRISPR-Cas is a bacterial defense system that employs RNA-guided endonucleases to destroy invading foreign nucleic acids. Bacteriophages produce anti-CRISPR (Acr) proteins to evade CRISPR-Cas defense during the infection. AcrIIC5, a type II-C Cas9 inhibitor, exhibits unusual variations in the local backbone fold between its orthologs.
View Article and Find Full Text PDFAchondroplasia, the most prevalent short-stature disorder, is caused by missense variants overactivating the fibroblast growth factor receptor 3 (FGFR3). As current surgical and pharmaceutical treatments only partially improve some disease features, we sought to explore a genetic approach. We show that an enhancer located 29 kb upstream of mouse Fgfr3 (-29E) is sufficient to confer a transgenic mouse reporter with a domain of expression in cartilage matching that of Fgfr3.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.
Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!