Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective.

Clin Transl Imaging

Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, 9 Blegdamsvej, 2100 Copenhagen, Denmark.

Published: November 2016

Purpose: Magnetic resonance imaging (MRI) plays a key role in neurooncology, i.e., for diagnosis, treatment evaluation and detection of recurrence. However, standard MRI cannot always separate malignant tissue from other pathologies or treatment-induced changes. Advanced MRI techniques such as diffusion-weighted imaging, perfusion imaging and spectroscopy show promising results in discriminating malignant from benign lesions. Further, supplemental imaging with amino acid positron emission tomography (PET) has been shown to increase accuracy significantly and is used routinely at an increasing number of sites. Several centers are now implementing hybrid PET/MRI systems allowing for multiparametric imaging, combining conventional MRI with advanced MRI and amino acid PET imaging. Neurooncology is an obvious focus area for PET/MR imaging.

Methods: Based on the literature and our experience from more than 300 PET/MRI examinations of brain tumors with F-fluoro-ethyl-tyrosine, the clinical use of PET/MRI in adult and pediatric neurooncology is critically reviewed.

Results: Although the results are increasingly promising, the added value and range of indications for multiparametric imaging with PET/MRI are yet to be established. Robust solutions to overcome the number of issues when using a PET/MRI scanner are being developed, which is promising for a more routine use in the future.

Conclusions: In a clinical setting, a PET/MRI scan may increase accuracy in discriminating recurrence from treatment changes, although sequential same-day imaging on separate systems will often constitute a reliable and cost-effective alternative. Pediatric patients who require general anesthesia will benefit the most from simultaneous PET and MR imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581366PMC
http://dx.doi.org/10.1007/s40336-016-0213-8DOI Listing

Publication Analysis

Top Keywords

imaging
9
clinical pet/mri
8
advanced mri
8
amino acid
8
increase accuracy
8
multiparametric imaging
8
pet imaging
8
pet/mri
6
mri
5
neurooncology
4

Similar Publications

Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.

Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Lymphadenopathy is associated with lymph node abnormal size or consistency due to many causes. We employed the deep convolutional neural network ResNet-34 to detect and classify CT images from patients with abdominal lymphadenopathy and healthy controls. We created a single database containing 1400 source CT images for patients with abdominal lymphadenopathy (n = 700) and healthy controls (n = 700).

View Article and Find Full Text PDF

Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.

Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.

Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!