High molecular weight polybutadienes and rhodium complexes were used to produce single chain organometallic nanoparticles. Irradiation of high -polybutadiene in the presence of a photosensitizer isomerised the double bonds to produce differing / ratios within the polymer. Notably, a higher percentage of carbon-carbon double bonds within the polymer structure led to faster binding of metal ions, as well as their faster removal by competing phosphine ligands. The experimental results were supported and rationalized by DFT computations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592374 | PMC |
http://dx.doi.org/10.1039/c5sc04535e | DOI Listing |
BMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Sci Rep
December 2024
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:
An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
PtGd alloy nanoparticles supported in hollow mesoporous carbon spheres (HMCS; ) were successfully prepared by the thermal reduction of organometallic Pt and Gd complexes without oxygen atoms supported in the pores of HMCS. The structures of PtGd alloy nanoparticles were fully characterized by TEM, HAADF-STEM-EDS, XRD, XAFS, and XPS, suggesting the formation of uniform PtGd alloy nanoparticles with an average particle size of 5.9 nm.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
The classical electrochemiluminescence (ECL) reagent Ru(bpy) was first doped into CdSe QDs to prepare novel dual-potential color-resolved luminophore Ru-CdSe QDs. Ru-CdSe QDs emitted a strong red ECL signal at a positive potential with coreactant TPrA and a strong green ECL signal at a negative potential with coreactant KSO. As a proof-of-concept application, this work introduced Ru-CdSe QDs into a dual-channel closed bipolar electrode (CBPE) system to construct an ECL biosensor for simultaneous detection of chloramphenicol (CAP) and kanamycin (KAN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!