The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus , which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is , whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of spores in the internalization of yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to spores did not display the phenotypic profile M1/M2, and had reduced expression of pattern recognition receptors, such as TLR2, dectin-1 and dectin-2, all involved in the first line of defense against clinically important yeasts. Our data could infer that spores may confer susceptibility to infection by .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594820 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.01681 | DOI Listing |
Sci Rep
January 2025
Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India.
Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense.
View Article and Find Full Text PDFElife
January 2025
State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.
Non-inheritable antibiotic or phenotypic resistance ensures bacterial survival during antibiotic treatment. However, exogenous factors promoting phenotypic resistance are poorly defined. Here, we demonstrate that are recalcitrant to killing by a broad spectrum of antibiotics under high magnesium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!