The Southern Flounder is a high-value species and a promising aquaculture candidate. Because sperm volume can be limited in this species (<500 μL), new sperm cryopreservation methods need to be evaluated. Vitrification is an alternative to conventional slow-rate freezing, whereby small volumes are cryopreserved at high cooling rates (>1,000°C/min). The goal of this work was to develop a standardized approach for vitrification of Southern Flounder sperm. The specific objectives were to (1) evaluate thawing methods and vitrification solutions, (2) evaluate the postthaw membrane integrity of sperm vitrified in different cryoprotectant solutions, (3) examine the relationship between membrane integrity and motility, and (4) evaluate the ability of vitrified sperm to fertilize eggs. From the vitrification solutions tested, the highest postthaw motility (28 ± 9% [mean ± SD]) and membrane integrity (11 ± 4%) was observed for 20% ethylene glycol plus 20% glycerol. There was no significant difference in postthaw motility of sperm thawed at 21°C or at 37°C. Fertilization from vitrified sperm in one trial yielded the same fertilization rate (50 ± 20%) as the fresh sperm control, while the sperm from the other two males yielded 3%. This is the first report of fertilization by vitrified sperm in a marine fish. Vitrification can be simple, fast, inexpensive, performed in the field, and, at least for small fishes, offers an alternative to conventional cryopreservation. Because of the minute volumes needed for ultrarapid cooling, vitrification is not presently suited as a production method for large fishes. Vitrification can be used to reconstitute lines from valuable culture species and biomedical models, conserve mutants for development of novel lines for ornamental aquaculture, and transport frozen sperm from the field to the repository to expand genetic resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603317 | PMC |
http://dx.doi.org/10.1080/15222055.2017.1281855 | DOI Listing |
Am J Ophthalmol Case Rep
December 2024
Genomic Laboratory, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
Purpose: To report the posterior segment findings in a case with a biallelic frameshift pathogenic variant at chromosome 10 c.616del exon7 p.(His206Thrfs∗61).
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:
Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses.
View Article and Find Full Text PDFPol J Vet Sci
June 2024
Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn-Kortowo, Poland.
The aim of this study was to evaluate the quality parameters and selected biochemical markers of canine semen sampled at 24-h intervals over a period of 5 days, preceded by 6 months of sexual abstinence. Full ejaculates were obtained from 6 dogs. Ejaculate volume and total sperm counts in the ejaculate decreased gradually on successive sampling days.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States.
RIN4 is a crucial regulator of plant immunity, playing a role in both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). While the impact of post-translational modifications (PTMs) on RIN4 has been extensively studied, their specific effects on plant immune response regulation and the underlying mechanisms have remained unclear. In this study, we investigated the phosphorylation of RIN4 at threonine-166 (RIN4) in transgenic lines expressing various RIN4 variants.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!