Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Technology provides the potential to empower frontline healthcare workers with low levels of training and literacy, particularly in low- and middle-income countries. An obvious platform for achieving this aim is the smartphone, a low cost, almost ubiquitous device with good supply chain infrastructure and a general cultural acceptance for its use. In particular, the smartphone offers the opportunity to provide augmented or procedural information through active audiovisual aids to illiterate or untrained users, as described in this article. In this article, the process of refinement and iterative design of a smartphone application prototype to support perinatal surveillance in rural Guatemala for indigenous Maya lay midwives with low levels of literacy and technology exposure is described. Following on from a pilot to investigate the feasibility of this system, a two-year project to develop a robust in-field system was initiated, culminating in a randomized controlled trial of the system, which is ongoing. The development required an agile approach, with the development team working both remotely and in country to identify and solve key technical and cultural issues in close collaboration with the midwife end-users. This article describes this process and intermediate results. The application prototype was refined in two phases, with expanding numbers of end-users. Some of the key weaknesses identified in the system during the development cycles were user error when inserting and assembling cables and interacting with the 1-D ultrasound-recording interface, as well as unexpectedly poor bandwidth for data uploads in the central healthcare facility. Safety nets for these issues were developed and the resultant system was well accepted and highly utilized by the end-users. To evaluate the effectiveness of the system after full field deployment, data quality, and corruption over time, as well as general usage of the system and the volume of application support for end-users required by the in-country team was analyzed. Through iterative review of data quality and consistent use of user feedback, the volume and percentage of high quality recordings was increased monthly. Final analysis of the impact of the system on obstetrical referral volume and maternal and neonatal clinical outcomes is pending conclusion of the ongoing clinical trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604479 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!