Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nano- and micromechanical solid-state quantum devices have become a focus of attention. Reliably generating nonclassical states of their motion is of interest both for addressing fundamental questions about macroscopic quantum phenomena and for developing quantum technologies in the domains of sensing and transduction. We used quantum optical control techniques to conditionally generate single-phonon Fock states of a nanomechanical resonator. We performed a Hanbury Brown and Twiss-type experiment that verified the nonclassical nature of the phonon state without requiring full state reconstruction. Our result establishes purely optical quantum control of a mechanical oscillator at the single-phonon level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aan7939 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!