Insights into the Genome of the Anaerobic Acetogen DSM 10669.

Genome Announc

Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany

Published: September 2017

is a spore-forming, anaerobic acetogen isolated from soil derived from east central Germany. The genome contains genes of the Wood-Ljungdahl pathway required for carbon fixation and genes involved in the biosynthesis of the amino acid pyrrolysine. The genome (5.92 Mb) harbors 4,355 predicted protein-encoding genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609420PMC
http://dx.doi.org/10.1128/genomeA.00983-17DOI Listing

Publication Analysis

Top Keywords

anaerobic acetogen
8
insights genome
4
genome anaerobic
4
acetogen dsm
4
dsm 10669
4
10669 spore-forming
4
spore-forming anaerobic
4
acetogen isolated
4
isolated soil
4
soil derived
4

Similar Publications

Purification and characterization of a thermophilic NAD-dependent lactate dehydrogenase from Moorella thermoacetica.

FEBS Open Bio

January 2025

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

Oxidation of lactate under anaerobic dark fermentative conditions poses an energetic problem. The redox potential of the lactate/pyruvate couple is too electropositive to reduce the physiological electron carriers NAD(P) or ferredoxin. However, the thermophilic, anaerobic, and acetogenic model organism Moorella thermoacetica can grow on lactate but was suggested to have a NAD-dependent lactate dehydrogenase (LDH), based on enzyme assays in cell-free extract.

View Article and Find Full Text PDF

Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO) and methane (CH). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used metagenomic and cultivation-based methods to analyze the microbiomes and found stable microbial communities similar to those from critical early Earth periods, indicating a link between present-day microbes and historical biospheric evolution.
  • * The Upper Jurassic aquifer, rich in CO and influenced by magmatic processes, hosts a unique ecosystem that may reflect early Earth conditions, contributing valuable insights into microbial evolution and the formation of the modern biosphere.
View Article and Find Full Text PDF

Ferruginous conditions prevailed through Earth's early oceans history, yet our understanding of biogeochemical cycles in anoxic iron-rich, sulfate-poor sediments remains elusive in terms of redox processes and organic matter remineralization. Using comprehensive geochemistry, cell counts, and metagenomic data, we investigated the taxonomic and functional distribution of the microbial subsurface biosphere in Lake Towuti, a stratified ferruginous analogue. Below the zone in which pore water becomes depleted in electron acceptors, cell densities exponentially decreased while microbial assemblages shifted from iron- and sulfate-reducing bacterial populations to fermentative anaerobes and methanogens, mostly selecting Bathyarchaeia below the sulfate reduction zone.

View Article and Find Full Text PDF

The roles of phytogenic feed additives, trees, shrubs, and forages on mitigating ruminant methane emission.

Front Vet Sci

November 2024

Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Ruminant animals naturally emit methane gas owing to anaerobic microbial fermentation in the rumen, and these gases are considered major contributors to global warming. Scientists worldwide are attempting to minimize methane emissions from ruminant animals. Some of these attempts include the manipulation of rumen microbes using antibiotics, synthetic chemicals, dietary interventions, probiotics, propionate enhancers, stimulation of acetogens, manipulation of rumination time, vaccination, and genetic selection of animals that produce low methane (CH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!