G protein-gated inward rectifier K (GIRK) channels are members of the super-family of proteins known as inward rectifier K (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2017.09.020 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS.
View Article and Find Full Text PDFElife
December 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States.
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA. Electronic address:
Tumor associated epilepsy is a common and debilitating co-morbidity of brain tumors, for which inadequate treatments are available. Additionally, animal models suggest a potential link between seizures and tumor progression. Our group has previously described a mouse model of diffusely infiltrating glioma and associated chronic epilepsy.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
August 2024
Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
Schizophrenia is a complex disease involving the dysregulation of numerous brain circuits and patients exhibit positive symptoms (hallucinations, delusions), negative symptoms (anhedonia), and cognitive impairments. We have shown that the antipsychotic efficacy of positive allosteric modulators (PAMs) of both the M muscarinic receptor and metabotropic glutamate receptor 1 (mGlu) involve the retrograde activation of the presynaptic cannabinoid type-2 (CB) receptor, indicating that CB activation or potentiation could result in a novel therapeutic strategy for schizophrenia. We used two complementary assays, receptor-mediated phosphoinositide hydrolysis and GIRK channel activation, to characterize a CB PAM scaffold, represented by the compound EC21a, to explore its potential as a starting point to optimize therapeutics for schizophrenia.
View Article and Find Full Text PDFNeurochem Res
November 2024
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!