Toxoplasma gondii is an obligatory intracellular protozoan, which infects most of the warm-blooded animals, causing serious public health problems and enormous economic losses worldwide. The rhoptry effector protein 54 (ROP54) has been indicated as a virulence factor that promotes Toxoplasma infection by modulating GBP2 loading onto parasite-containing vacuoles, which can modulate some aspects of the host immune response. In order to evaluate the immuno-protective value of ROP54, we constructed a eukaryotic recombinant plasmid expressing T. gondii ROP54 and intramuscularly immunized Kunming mice with this recombinant plasmid against acute and chronic toxoplasmosis. All mice immunized with pVAX-ROP54 elicited a high level of specific antibody responses, a significant increase of lymphocyte proliferation, and a significant level of Th1-type cytokines (IFN-γ, IL-2 and IL-12p70), in addition to an increased production of Th2-type cytokines (IL-4 and IL-10). These results demonstrated that pVAX-ROP54 induced significant cellular and humoral (Th1/Th2) immune responses, which extended the survival time (13.0±1.15days for pVAX-ROP54 vs 6.7±0.48days for pVAX I, 6.8±0.42days for PBS and 6.5±0.53 for blank control) and significantly reduced cyst burden (35.9% for pVAX-ROP54, 1% for pVAX I and 2% for PBS, compared with blank control) of immunized mice. These results indicate that the recombinant ROP54 plasmid can provide partial protection and might be a potential vaccine candidate against acute and chronic toxoplasmosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2017.09.007DOI Listing

Publication Analysis

Top Keywords

toxoplasma gondii
8
gondii rop54
8
toxoplasmosis mice
8
recombinant plasmid
8
acute chronic
8
chronic toxoplasmosis
8
blank control
8
rop54
5
vaccination dna
4
dna vaccine
4

Similar Publications

Background: Toxoplasmosis in pregnancy is associated with serious and irreversible maternal and fetal detrimental consequences. Also, different seroprevalence of Toxoplasma gondii in pregnancy is reported in many countries. The present systematic review and meta-analysis study aimed to determine the global seroprevalence of Toxoplasma gondii in pregnant women.

View Article and Find Full Text PDF

chitinase-like protein orchestrates cyst wall glycosylation to facilitate effector export and cyst turnover.

Proc Natl Acad Sci U S A

February 2025

Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63130.

bradyzoites reside in tissue cysts that undergo cycles of expansion, rupture, and release to foster chronic infection. The glycosylated cyst wall acts as a protective barrier, although the processes responsible for formation, remodeling, and turnover are not understood. Herein, we identify a noncanonical chitinase-like enzyme TgCLP1 that localizes to micronemes and is targeted to the cyst wall after secretion.

View Article and Find Full Text PDF

Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.

View Article and Find Full Text PDF

Miguel Chiurillo works in the field of protein kinases, studying their role in cell signaling and cell cycle progression in . In this mSphere of Influence article, he reflects on how the research articles "Systematic functional analysis of protein kinases identifies regulators of differentiation or survival" by Baker et al. and "Screening the kinome with high throughput tagging identifies a regulator of invasion and egress" by Smith et al.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!