A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Pipeline for Studying and Engineering Single-Subunit Oligosaccharyltransferases. | LitMetric

A Pipeline for Studying and Engineering Single-Subunit Oligosaccharyltransferases.

Methods Enzymol

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States. Electronic address:

Published: May 2018

Asparagine-linked (N-linked) protein glycosylation is one of the most abundant types of posttranslational modification, occurring in all domains of life. The central enzyme in N-linked glycosylation is the oligosaccharyltransferase (OST), which catalyzes the covalent attachment of preassembled glycans to specific asparagine residues in target proteins. Whereas in higher eukaryotes the OST is comprised of eight different membrane proteins, of which the catalytic subunit is STT3, in kinetoplastids and prokaryotes the OST is a monomeric enzyme bearing homology to STT3. Given their relative simplicity, these single-subunit OSTs (ssOSTs) have emerged as important targets for mechanistic dissection of poorly understood aspects of N-glycosylation and at the same time hold great potential for the biosynthesis of custom glycoproteins. To take advantage of this utility, this chapter describes a multipronged approach for studying and engineering ssOSTs that integrates in vivo screening technology with in vitro characterization methods, thereby creating a versatile and readily adaptable pipeline for virtually any ssOST of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2017.07.011DOI Listing

Publication Analysis

Top Keywords

studying engineering
8
pipeline studying
4
engineering single-subunit
4
single-subunit oligosaccharyltransferases
4
oligosaccharyltransferases asparagine-linked
4
asparagine-linked n-linked
4
n-linked protein
4
protein glycosylation
4
glycosylation abundant
4
abundant types
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!