Water quality criteria (WQC) are considered to be an effective management tool for protecting aquatic environments. To derive site-specific WQC for an area, local data based on local species are essential to improve the applicability of WQC derived. Due to the paucity of local fish data available for the development of site-specific WQC for the Liao River, China, four local and widespread fishes (Pseudorasbora parva, Abbottina liaoningensis, Ctenogobius giurinus, and Misgurnus anguillicaudatus) were chosen to test their sensitivities to ammonia, cadmium and nitrobenzene. These compounds are common and regularly-measured pollutants in Chinese rivers. In addition to the published data for species resident in the Liao River, site-specific WQC for the three chemicals were derived using both a log-logistic species sensitivity distribution (SSD) and the method recommended by the USEPA, in line with current best practice, which were then compared with Chinese national WQC. It was found that A. liaoningensis was the most sensitive, followed, in order, by P. parva, C. giurinus and M. anguillicaudatus was the least sensitive, and this trend was the same to all three chemicals tested. When comparing the SSD derived solely from previously-published data with that including our data on local fish, there were significant differences identified among parameters describing the SSD curves for ammonia and nitrobenzene and significant differences were detected for site-specific WQC derived for all of the three chemicals. Based on the dataset with local fish data taxa, site-specific WQC of Liao River for ammonia, cadmium, and nitrobenzene were derived to be 20.53mg/L (at a pH of 7.0 and temperature of 20°C), 3.76μg/L (at a hardness of 100mg/L CaCO), and 0.49mg/L, respectively. Using the same deriving method for each chemical, the national Chinese WQC were higher than site-specific WQC derived in this study for ammonia (national WQC of 25.16mg/L) and nitrobenzene (national WQC of 0.57mg/L), while the national WQC for cadmium was lower (national WQC of 1.81μg/L). These results indicated that published data can be helpful for use when deriving site-specific WQC but that there were differences between site-specific and national WQC which may lead to either over- or under-protection depending on the pollutant if national WQC were used as the basis for the water management of specific river systems, like the Liao River.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2017.09.008 | DOI Listing |
J Hazard Mater
December 2020
Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
Multiple water chemistry parameters influence metal toxicity in natural waters and accurate quantification of those influences may accelerate the development of site-specific water quality criteria (WQC) and further execute metal risk assessment for better protection of aquatic biota. Here, we investigated the effects of water chemistry parameters on copper (Cu) toxicity of larval zebrafish (Danio rerio) and then incorporated the effects of key parameters in a Toxicokinetic and Toxicodynamic (TK-TD) model. Further, the proposed TK-TD model was used to predict Cu toxicity in laboratory artificial waters as well as natural water samples.
View Article and Find Full Text PDFIntegr Environ Assess Manag
November 2018
Great Lakes Environmental Center, Traverse City, Michigan, USA.
In 2007, the Biotic Ligand Model (BLM) became the basis for the US Environmental Protection Agency (USEPA) freshwater water quality criteria (WQC) for Cu. Applying the BLM typically results in time-variable WQC, which are not unique to the BLM; they result from any criteria approach that depends on water chemistry (e.g.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2018
School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea. Electronic address:
The objective of this study was to determine whether the water effect ratio (WER) or biotic ligand model (BLM) could be applied to efficiently develop water quality criteria (WQC) in Korea. Samples were collected from 12 specific sites along the Yeongsan River (YSR), Korea, including two sewage treatment plants and one estuary lake. A copper toxicity test using Daphnia magna was performed to determine the WER and to compare to the BLM prediction.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2018
Liaoning Academy of Environmental Sciences, Shenyang 110016, China.
Water quality criteria (WQC) are considered to be an effective management tool for protecting aquatic environments. To derive site-specific WQC for an area, local data based on local species are essential to improve the applicability of WQC derived. Due to the paucity of local fish data available for the development of site-specific WQC for the Liao River, China, four local and widespread fishes (Pseudorasbora parva, Abbottina liaoningensis, Ctenogobius giurinus, and Misgurnus anguillicaudatus) were chosen to test their sensitivities to ammonia, cadmium and nitrobenzene.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2018
The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
Generic water quality criteria (WQC) of a chemical are usually set based on results generated from toxicity tests which were conducted using standard laboratory water with well-controlled physiochemical properties. However, in natural aquatic environments, physiochemical characteristics, such as salinity, total suspended solid, total organic carbon and the co-existence of chemical contaminants, often vary spatially and temporally. These parameters can, in turn, alter the bioavailability of target chemicals and, thus, influence their toxicity to marine organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!