A novel multifunctional composite adsorbent which possesses the ability for anion exchange and toxic metal complexation has been synthesized by the hybridization of layered double hydroxides (LDH) and fulvic acid (FA) in this study. The results show that FA with lots of functional groups can be effectively and stably anchored on the surface of LDH through coagulation process without occupying the interlayer of LDH. Therefore, the anion exchange ability remains and the adsorption capacity of Orange II can reach 1.9mmol/g, which is almost as much as stoichiometric anion exchange capacity of pure LDH. Moreover, the composite adsorbent's adsorption capacity of Cu, Pb, Ni and Cd can also get to 2.25mmol/g, 0.98mmol/g, 0.99mmol/g and 0.16mmol/g respectively with an adsorption preference order of Cu>Pb>Ni>Cd. In addition, Orange II and toxic metals are able to be simultaneously removed by this composite adsorbent, and the adsorption of toxic metals can be enhanced by the synergetic adsorption of Orange II. Anion exchange with Cl in LDH matrix accounts for the adsorption of Orange II, while the adsorption of toxic metal is mainly attributed to the complexation of carboxyl functional group derived from FA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2017.09.006 | DOI Listing |
Photosynth Res
January 2025
Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.
Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea.
Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.
Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!