Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608493PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185209PLOS

Publication Analysis

Top Keywords

miniature in-line
8
in-line load-cell
8
load-cell measure
8
tensile forces
8
tibialis anterior
8
anterior tendon
8
tendon rats
8
muscular forces
8
biomechanical system
8
forces
5

Similar Publications

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research.

View Article and Find Full Text PDF
Article Synopsis
  • - The multicore fiber amplifier is essential for advanced spatial division multiplexing (SDM) communication, but it has more complex challenges than traditional single-core systems, prompting the search for a more efficient solution.
  • - An innovative triple cladding 13-core Er/Yb co-doped microstructured fiber (13CEYDMOF) is proposed to balance performance factors like efficiency and cost, featuring unique peanut-shaped air holes that improve excitation and reduce fiber size.
  • - Experimental results show that the 13CEYDMOF achieved impressive performance metrics, including an average gain of 23.8 dB and a low noise figure, making it suitable for transmitting 13 spatial channels effectively in the telecommunication band.
View Article and Find Full Text PDF
Article Synopsis
  • - Laser-based mid-IR photothermal spectroscopy (PTS) is a rapid and sensitive analytical method that utilizes advanced laser technology to capture the absorption characteristics of various materials, such as liquids or solids.
  • - This study utilizes an external cavity quantum cascade laser (EC-QCL) to analyze a thin film of polymethyl methacrylate (PMMA) on a silicon nitride micro-ring resonator, demonstrating its effectiveness in creating an on-chip photothermal sensor.
  • - The research highlights the optimal alignment and focusing techniques for the laser setup, showing that PTS can lead to compact, efficient sensors suitable for real-time monitoring in industrial applications.
View Article and Find Full Text PDF

A collagenase-decorated Cu-based nanotheranostics: remodeling extracellular matrix for optimizing cuproptosis and MRI in pancreatic ductal adenocarcinoma.

J Nanobiotechnology

November 2024

Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People's Republic of China.

Article Synopsis
  • PDAC is a challenging cancer to treat due to its dense extracellular matrix and resistance to drugs, leading to poor patient outcomes.
  • This study presents a novel theranostic strategy using hollow mesoporous organosilica nanoparticles to deliver copper and disulfiram, enhancing drug delivery and inducing cell death in PDAC.
  • The approach improves treatment effectiveness and provides MRI imaging capabilities, showing promising results in reducing tumor size in animal models.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!