ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g is manifested at the second cycle and a capacity of 664 mAh·g is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g even at a high current density of 1600 mA·g. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666913 | PMC |
http://dx.doi.org/10.3390/ma10101102 | DOI Listing |
Mar Pollut Bull
January 2025
Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India.
The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Food Quality Control and Analysis, Vocational School of Health Services, Istanbul Gelisim University, Avcılar, Istanbul, Turkey.
Stem cell nanotechnology (SCN) is an important scientific field to guide stem cell-based research of nanoparticles. Currently, nanoparticles (NPs) have a rich spectrum regarding the sources from which they are obtained (metallic, polymeric, etc.), the methods of obtaining them (physical, chemical, biological), and their shape, size, electrical charge, etc.
View Article and Find Full Text PDFSmall
January 2025
School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China.
As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!