Microwave Deposition of Palladium Catalysts on Graphite Spheres and Reduced Graphene Oxide Sheets for Electrochemical Glucose Sensing.

Sensors (Basel)

Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.

Published: September 2017

This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period (i.e., 10 min) to fast synthesize Pd nanocrystals onto a carbon support at 150 °C. The selection of carbon support plays a crucial role in affecting Pd particle size and dispersion uniformity. The robust design of Pd-rGO catalyst electrode displays an enhanced electrocatalytic activity and sensitivity toward GOR. The enhanced performance is mainly attributed to the synergetic effect that combines small crystalline size and two-dimensional conductive support, imparting high accessibility to non-enzymatic GOR. The rGO sheets serve as a conductive scaffold, capable of fast conducting electron. The linear plot of current response versus glucose concentration exhibits good correlations within the range of 1-12 mM. The sensitivity of the Pd-rGO catalyst is significantly enhanced by 3.7 times, as compared to the Pd-GS catalyst. Accordingly, the Pd-rGO catalyst electrode can be considered as a potential candidate for non-enzymatic glucose biosensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676620PMC
http://dx.doi.org/10.3390/s17102163DOI Listing

Publication Analysis

Top Keywords

pd-rgo catalyst
12
reduced graphene
8
graphene oxide
8
non-enzymatic glucose
8
carbon support
8
catalyst electrode
8
microwave deposition
4
deposition palladium
4
palladium catalysts
4
catalysts graphite
4

Similar Publications

Li-CO2 batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy and environmentally friendly CO2 fixation ability. However, their development for applications requires a high energy efficiency and long cycle-life, this is currently limited to the formation of wide-bandgap insulator Li2CO3 during discharge. Here, nanoparticle Pd supported on reduced graphene oxide (rGO) is utilized as cathodes for Li-CO2 batteries, Pd nanoparticles as active centers significantly enhance CO2RR/CO2ER reaction activity, which can support the fast formation and decomposition of Li2CO3 in organic electrolytes and achieve a high discharge capacity of 7500 mAh g-1.

View Article and Find Full Text PDF

In this work, nitrogen (N)-doped graphene film is synthesized, as a photo-catalyst, on one side of the copper foam by chemical vapor deposition and the copper foam is directly used as an electrode after porous Pd@rGO cathode loading to the other side of the foam for the photo-assisted charging of the Li-ion oxygen battery. The amount of urea (CO(NH)), which is used as N atom source, is optimized to get maximum photo-anodic currents from the n-type graphene films. The optical band gap and the valance band edge potential of the optimized N-doped graphene film are determined as 2.

View Article and Find Full Text PDF
Article Synopsis
  • A new electrocatalyst made from yttrium oxide and palladium nanoparticles was created using a sodium borohydride reduction method, optimizing the ratio of these materials to enhance performance.
  • Characterization techniques like XPS, TEM, and XRD confirmed that the best-performing electrocatalyst, PdY/rGO, had the highest current density and lowest onset potential compared to other standards.
  • The presence of yttrium oxide improved the structure and properties of the catalyst, resulting in greater stability, resistance to CO poisoning, and a larger electrochemically active surface area.
View Article and Find Full Text PDF

Hydrodechlorination (HDC) is a reaction that involves the use of hydrogen to cleave the C-Cl bond in chlorinated organic compounds such as chlorophenols and chlorobenzenes, thus reducing their toxicity. In this study, a palladium (Pd) catalyst, which is widely used for HDC due to its advantageous physical and chemical properties, was immobilized on alumina (Pd/Al) and graphene-based materials (graphene oxide and reduced graphene oxide; Pd/GO and Pd/rGO, respectively) to induce the HDC of 4-chlorophenol (4-CP). The effects of the catalyst dosage, initial 4-CP concentration, and pH on 4-CP removal were evaluated.

View Article and Find Full Text PDF

The exploitation of highly efficient and stable hydrogen generation from chemical storage of formaldehyde (FA) is of great significance to the sustainable development of the future. Moreover, developing an accurate, rapid, reliable, and cost-effective catalyst for electrochemical detection of FA in solution is appealing. Herein, we report rational construction of Pd nanoparticles decorated reduced graphene oxides (Pd/rGO) nanohybrids not only as robust catalysts to produce hydrogen from alkaline FA solution and but also electrocatalysts for electrochemical detection of FA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!