Background: PM2.5 precursor emissions have declined over the course of several decades, following the implementation of local, state, and federal air quality policies. Estimating the corresponding change in population exposure and PM2.5-attributable risk of death prior to the year 2000 is made difficult by the lack of PM2.5 monitoring data.
Objectives: We used a new technique to estimate historical PM2.5 concentrations, and estimated the effects of changes in PM2.5 population exposures on mortality in adults (age ≥30y), and on life expectancy at birth, in the contiguous United States during 1980-2010.
Methods: We estimated annual mean county-level PM2.5 concentrations in 1980, 1990, 2000, and 2010 using universal kriging incorporating geographic variables. County-level death rates and national life tables for each year were obtained from the U.S. Census and Centers for Disease Control and Prevention. We used log-linear and nonlinear concentration-response coefficients from previous studies to estimate changes in the numbers of deaths and in life years and life expectancy at birth, attributable to changes in PM2.5.
Results: Between 1980 and 2010, population-weighted PM2.5 exposures fell by about half, and the estimated number of excess deaths declined by about a third. The States of California, Virginia, New Jersey, and Georgia had some of the largest estimated reductions in PM2.5-attributable deaths. Relative to a counterfactual population with exposures held constant at 1980 levels, we estimated that people born in 2050 would experience an ∼1-y increase in life expectancy at birth, and that there would be a cumulative gain of 4.4 million life years among adults ≥30y of age.
Conclusions: Our estimates suggest that declines in PM2.5 exposures between 1980 and 2010 have benefitted public health. https://doi.org/10.1289/EHP507.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903877 | PMC |
http://dx.doi.org/10.1289/EHP507 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!