Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Strong electronic correlations, interfaces, and defects, and disorder each individually challenge the theoretical methods for predictions of materials properties. These challenges are all simultaneously present in complex transition-metal-oxide interfaces and superlattices, which are known to exhibit unique and unusual properties caused by multiple coupled degrees of freedom and strong electronic correlations. Here we show that ab initio quantum Monte Carlo (QMC) solutions of the many-electron problem are now possible for the full complexity of these systems. Within a single nonempirical theoretical approach, we unambiguously establish the site-specific stability of oxygen vacancies in the (LaFeO)/(SrFeO) superlattice, accounting for experimental data, and predict their migration pathways. QMC calculations are now capable of playing a major role in the elucidation of many-body phenomena in complex oxides previously out of reach of first-principles theories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.7b00483 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!