Blocking autophagy enhances the apoptotic effect of 18β-glycyrrhetinic acid on human sarcoma cells via endoplasmic reticulum stress and JNK activation.

Cell Death Dis

Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China.

Published: September 2017

AI Article Synopsis

  • Sarcoma is a rare type of cancer that occurs in specific tissues, and a natural compound called 18β-glycyrrhetinic acid (GA) shows potential in inhibiting its growth.
  • GA affects sarcoma cells by causing them to stop dividing and triggering cell death through both extrinsic and intrinsic pathways, as well as activating autophagy.
  • The study indicates that combining GA with autophagy inhibitors could be a promising strategy for treating sarcoma, with minimal toxicity to other organs.

Article Abstract

Sarcoma, a rare form of cancer, is unlike the much more common carcinomas as it occurs in a distinct type of tissue. The potent antitumor effects of 18β-glycyrrhetinic acid (GA), a novel naturally derived agent, have been demonstrated in various cancers. However, the effect of GA on human sarcoma, and the underlying mechanisms, remain to be elucidated. In the current study, we show that GA inhibits sarcoma cell proliferation by inducing G0/G1-phase arrest. Exposure to GA resulted in the activation of caspase-3, -8, and -9, indicating that GA induced apoptosis through both extrinsic and intrinsic pathways. In addition, the autophagy pathway, characterized by the conversion of LC3-I to LC3- II, was activated, resulting in increased Beclin-1 protein levels, decreased p62 expression, and stimulation of autophagic flux. The present findings showed that GA stimulated autophagy by inducing endoplasmic reticulum (ER) stress via the IRE1-JNK pathway. Our data supported the prosurvival role of GA-induced autophagy when the autophagy pathway was blocked with specific chemical inhibitors. Finally, GA markedly reduced sarcoma growth, with little organ-related toxicity, in vivo. The present results suggest that the combination of GA with a specific autophagy inhibitor represents a promising therapeutic approach for the treatment of sarcoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636985PMC
http://dx.doi.org/10.1038/cddis.2017.441DOI Listing

Publication Analysis

Top Keywords

18β-glycyrrhetinic acid
8
human sarcoma
8
endoplasmic reticulum
8
reticulum stress
8
autophagy pathway
8
sarcoma
6
autophagy
5
blocking autophagy
4
autophagy enhances
4
enhances apoptotic
4

Similar Publications

Mechanistic Investigation of the Ce(III) Chloride Photoredox Catalysis System: Understanding the Role of Alcohols as Additives.

J Am Chem Soc

January 2025

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.

Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics.

View Article and Find Full Text PDF

Oxylipin Profiling of Airway Structural Cells Is Unique and Modified by Relevant Stimuli.

J Proteome Res

January 2025

Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.

Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.

View Article and Find Full Text PDF

Phytometabolites, Pharmacological Effects, Ethnomedicinal Properties, and Bioeconomic Potential of Velvet Apple (Diospyros discolor Willd.): A Review.

Chem Biodivers

January 2025

Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!