In this study, a novel conjugate consisting of glycol chitosan (GCS) and ethylene diamine tetraacetic acid (EDTA) was synthesized and characterized in terms of conjugation and heavy metal ion chelating capacity. Moreover, its potential application as a metalloenzyme inhibitor was evaluated with three thymopoietin oligopeptides in the presence of leucine aminopeptidase. The results from FTIR and NMR spectra revealed that the covalent attachment of EDTA to GCS was achieved by the formation of amide bonds between the carboxylic acid group of EDTA and amino groups of GCS. The conjugated EDTA lost part of its chelating capacity to cobalt ions compared with free EDTA as evidenced by the results of cobalt ion chelation-mediated fluorescence recovery of calcein. However, further investigation confirmed that GCS-EDTA at low concentrations significantly inhibited leucine aminopeptidase-mediated degradation of all thymopoietin oligopeptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152209 | PMC |
http://dx.doi.org/10.3390/molecules22081253 | DOI Listing |
J Mass Spectrom
January 2020
Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany.
Chemical cross-linking combined with mass spectrometry (XL-MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross-linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross-linkers containing an MS-labile urea group, we now present the biuret-based, CID-MS/MS-cleavable cross-linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross-linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.
View Article and Find Full Text PDFMolecules
July 2017
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
In this study, a novel conjugate consisting of glycol chitosan (GCS) and ethylene diamine tetraacetic acid (EDTA) was synthesized and characterized in terms of conjugation and heavy metal ion chelating capacity. Moreover, its potential application as a metalloenzyme inhibitor was evaluated with three thymopoietin oligopeptides in the presence of leucine aminopeptidase. The results from FTIR and NMR spectra revealed that the covalent attachment of EDTA to GCS was achieved by the formation of amide bonds between the carboxylic acid group of EDTA and amino groups of GCS.
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
March 2017
Institute of Cell Biophysics, Pushchino, Moscow region, Russia.
Thymic peptides are immune regulators produced mainly in the thymus. However, thymic peptides such as thymosin-α and thymopoietin have precursors widely expressed outside the thymus, localized in cell nuclei, and involved in vital nuclear functions. In stress-related conditions, they can relocalize.
View Article and Find Full Text PDFThymopentin (TP5) and bursopentin (BP5) are both immunopotentiators. To explore whether the TP5-BP5 fusion peptide (TBP5) has adjuvant activity or not, we cloned the TBP5 gene and confirmed that the TBP5 gene in a recombinant prokaryotic expression plasmid was successfully expressed in Escherichia coli BL21. TBP5 significantly promoted the proliferation of thymic and splenic lymphocytes of mice.
View Article and Find Full Text PDFJ Pharm Sci
February 2016
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
In this study, a novel glycol chitosan (GCS)-bestatin conjugate was synthesized and evaluated to demonstrate its efficacy in protecting thymopoietin oligopeptides from aminopeptidase-mediated degradation. Moreover, the mechanism and relative susceptibility of three thymopoietin oligopeptides, thymocartin (TP4), thymopentin (TP5), and thymotrinan (TP3), to enzymatic degradation were investigated and compared at the molecular level. Initial investigations indicated that formation of the GCS-bestatin conjugate, with a substitution degree of 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!