For the first time, 12 different supported deep eutectic solvent (DES) liquid membranes were prepared and characterized. These membranes consist of a polymeric support impregnated with a hydrophobic DES. First, the different membranes were characterized and their stability in water and air was determined. Subsequently, the supported DES liquid membranes were applied for the recovery of furfural (FF) and hydroxymethylfurfural (HMF) from aqueous solutions. The effects of substrate properties (e.g. pore size), DES properties (e.g. viscosity) and concentrations of FF and HMF in the feed phase on the observed diffusivities and permeabilities were assessed. It was found that the addition of DES enhances the transport of FF and HMF through the polymeric membrane support. In particular, the use of the DES consisting of thymol + lidocaine (in the molar ratio 2 : 1) impregnated in a polyethylene support resulted in enhanced transport for both FF and HMF, and is most interesting for (in situ) isolation of FF and HMF from aqueous solutions, e.g. in biorefinery processes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7fd00152eDOI Listing

Publication Analysis

Top Keywords

furfural hydroxymethylfurfural
8
deep eutectic
8
eutectic solvent
8
des liquid
8
liquid membranes
8
hmf aqueous
8
aqueous solutions
8
transport hmf
8
des
6
hmf
5

Similar Publications

Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation.

Food Res Int

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:

Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.

View Article and Find Full Text PDF

Electrostatic Spray Drying of a Milk Protein Matrix-Impact on Maillard Reactions.

Molecules

December 2024

Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland.

Electrostatic spray drying (ESD) of a milk protein matrix comprising whey protein isolate (WPI), skim milk powder (SMP), and lactose was compared to conventional spray drying (CSD) and freeze-drying (FD). ESD and CSD were used to produce powders at low (0.12-0.

View Article and Find Full Text PDF

Carob syrup, a traditional Mediterranean functional beverage obtained from (L.) pods, has been historically valued for its nutritional properties but is currently underutilized. This study compared the prebiotic potential of three handmade carob syrups produced by Tunisian women with commercial benchmarks from Italy, Greece and Cyprus.

View Article and Find Full Text PDF

Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.

View Article and Find Full Text PDF

The Isolation of 5-Hydroxymethylfuran Metabolites from the Broth Extract of Fomitopsis meliae (Agaricomycetes).

Int J Med Mushrooms

December 2024

Nano Technology Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai District, Thailand; aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand.

This study aimed to identify antibacterial compounds from the broth extract of Fomitopsis meliae (MSUCC009). From small-scale fermentation, the broth extract of F. meliae showed antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!