Purpose: To evaluate the suitability of MRI for lung cancer screening in a high-risk population.
Materials And Methods: A 5-year lung cancer screening program comparing MRI and low-dose CT (LDCT) in a high-risk population was initiated. 224 subjects were examined with MRI and LDCT. Acquired MRI sequences were T2w MultiVane XD, balanced steady-state-free precession, 3D T1w GRE, and DWI with a maximum in-room-time of 20 min. Categorization and management of nodules were based on Lung-RADS. MRI findings were correlated with LDCT as a reference. Here, we report on the first screening round.
Results: MRI accurately detected 61 of 88 nodules 4-5 mm, 20 of 21 nodules 6-7 mm, 12 of 12 nodules 8-14 mm, 4 of 4 nodules ≥ 15 mm (solid nodules), and 8 of 11 subsolid nodules. Sensitivity/specificity of MRI for nodule detection was 69.3/96.4% for 4-5 mm, 95.2/99.6% for 6-7 mm, 100/99.6% for 8-14 mm, 100/100% for ≥ 15 mm (solid nodules), and 72.7/99.2% for subsolid nodules. The early recall rate was 13.8% for MRI and 12.5% for LDCT. Following Lung-RADS recommendations and based on interdisciplinary consensus, histology was obtained in eight subjects. The biopsy rate was 3.6% for MRI and 3.4% for LDCT. In all of these eight cases, the nodules were carcinomas, and all of them were accurately detected by MRI.
Conclusion: The results of the first screening round suggest that MRI is suitable for lung cancer screening with an excellent sensitivity and specificity for nodules ≥ 6 mm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-017-2521-4 | DOI Listing |
J Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.
Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!