The phosphatidylinositol (PtdIns) family of lipids plays important roles in cell differentiation, proliferation, and migration. Abnormal expression, mutation, or regulation of their metabolic enzymes has been associated with various human diseases such as cancer, diabetes, and bipolar disorder. Recently, fluorescent derivatives have increasingly been used as chemical probes to monitor either lipid localization or enzymatic activity. However, the requirements of a good probe have not been well defined, particularly modifications on the diacylglycerol side chain partly due to challenges in generating PtdIns lipids. We have synthesized a series of fluorescent PtdIns(4,5)P (PIP) and PtdIns (PI) derivatives with various lengths of side chains and tested their capacity as substrates for PI3KIα and PI4KIIα, respectively. Both capillary electrophoresis and thin-layer chromatography were used to analyze enzymatic reactions. For both enzymes, the fluorescent probe with a longer side chain functions as a better substrate than that with a shorter chain and works well in the presence of the endogenous lipid, highlighting the importance of hydrophobicity of side chains in fluorescent phosphoinositide reporters. This comparison is consistent with their interactions with lipid vesicles, suggesting that the binding of a fluorescent lipid with liposome serves as a standard for assessing its utility as a chemical probe for the corresponding endogenous lipid. These findings are likely applicable to other lipid enzymes where the catalysis takes place at the lipid-water interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671358 | PMC |
http://dx.doi.org/10.1007/s00216-017-0633-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!