The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes.

Dalton Trans

Eugene F. Merkert Chemistry Center, Department of Chemistry, Boston College, 2609 Beacon St., Chestnut Hill, Massachusetts 02467, USA.

Published: October 2017

The reactivity of iron-based ring opening polymerization catalysts is compared when the catalyst is in three different oxidation states. Formally iron(i) monoalkoxide complexes 3a (p-methoxyphenoxide) and 3b (neopentoxide) supported by bis(imino)pyridine ligands were synthesized and investigated as catalysts for the ring opening polymerization and copolymerization of various monomers. For most monomers, 3a and 3b were superior catalysts compared to analogous, formally iron(ii) and iron(iii) complexes (1a/1b and 2a/2b, respectively) for the ring opening polymerization of various cyclic ester and cyclic carbonate monomers. Experimental and computational investigation into the electronic structures of 3a and 3b revealed that they are most accurately described as containing a high spin iron(ii) center that is antiferromagnetically coupled to a singly reduced bis(imino)pyridine ligand. This electronic structure leads to increased electron density near the metal center without modulating the apparent metal oxidation state, which results in superior catalytic performance for the more highly reduced 3a and 3b compared to the increasingly more oxidized complexes (i.e.1a/1b and 2a/2b, respectively) in ring opening polymerization reactions. These findings have significant ramifications for the emerging field of redox-switchable polymerization catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt03067cDOI Listing

Publication Analysis

Top Keywords

ring opening
16
opening polymerization
16
polymerization reactions
8
catalysts compared
8
2a/2b ring
8
polymerization
6
role ligand
4
ligand redox
4
redox non-innocence
4
non-innocence ring-opening
4

Similar Publications

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give -heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products.

View Article and Find Full Text PDF

The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.

View Article and Find Full Text PDF

Reprocessable and Recyclable Materials for 3D Printing via Reversible Thia-Michael Reactions.

Angew Chem Int Ed Engl

January 2025

Georgia Institute of Technology, School Of Chemistry and Biochemistry, 901 Atlantic Drive, 30332, United States, 30332, Atlanta, UNITED STATES OF AMERICA.

The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!