Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses.

Phys Chem Chem Phys

Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.

Published: October 2017

Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp05067dDOI Listing

Publication Analysis

Top Keywords

electron diffraction
12
charge migration
8
coherent superposition
8
diffraction patterns
8
ultrafast molecular
8
exploring coherent
4
electron
4
coherent electron
4
electron excitation
4
excitation migration
4

Similar Publications

Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques.

Int J Biol Macromol

January 2025

Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.

Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains.

View Article and Find Full Text PDF

Upgrade of Weak σ-hole Bond Donors via Cr(CO)3 Complexation.

Chemistry

January 2025

Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.

Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Remarkable improvement in drilling fluid properties with graphitic-carbon nitride for enhanced wellbore stability.

Heliyon

January 2025

Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.

This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.

View Article and Find Full Text PDF

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!