Gestational diabetes mellitus (GDM) has significant implications for the future health of the mother and child. However, the associations between human placental microbiota and GDM are poorly understood. We aimed to profile the placental microbiota of GDM and further define whether or not certain placental microbiota taxon correlates with specific clinical characteristics. Placenta were collected from GDM women and women with normal pregnancies ( = 10, in each group) consecutively recruited at Peking Union Medical College Hospital. The anthropometric parameters of mother and infant, and cord blood hormones, including insulin, leptin and insulin-like growth factor-1 (IGF-1) were measured. Bacterial genomic DNA was isolated using magnetic beads and the human placental microbiota was analyzed using the Illumina MiSeq Sequencing System based on the V3-V4 hypervariable regions of the 16S rRNA gene. It showed there was no statistical difference in the clinical characteristics of mothers and infants, such as BMI at the beginning of pregnancy and gestational weight gain (GWG), birth weight, and cord blood hormones, including insulin, leptin and IGF-1. We found that the placental microbiota is composed of four dominant phyla from Proteobacteria (the most abundant), Bacteroidetes, Actinobacteria and Firmicutes, with the proportion of Proteobacteria increased, and Bacteroidetes and Firmicutes were decreased of women with GDM. Further analyses suggested that bacterial taxonomic composition of placentas from the phylum level down to the bacteria level, differed significantly between women with GDM and non-GDM women with normal pregnancies. Regression analysis showed a cluster of key operational taxonomic units (OTUs), phyla and genera were significantly correlated with GWG during pregnancy of mothers, and cord blood insulin, IGF-1 and leptin concentrations. In conclusion, our novel study showed that a distinct placental microbiota profile is present in GDM, and is associated with clinical characteristics of mothers and infants. This study contributes to the theoretical foundation on the potential relationship between placental microbiota and GDM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592210 | PMC |
http://dx.doi.org/10.3389/fphys.2017.00675 | DOI Listing |
Microorganisms
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Obstetrics and Gynecology and Reproductive Medicine, Peking University First Hospital, Beijing, China.
Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Medicina Experimental, Hospital Alemán, Av. Pueyrredón 1640, C1118AAT, Ciudad Autónoma de Buenos Aires, Argentina.
Chronic hypertension is an increasingly prevalent condition that constitutes a risk factor for superimposed preeclampsia during pregnancy. In this study, we assessed the gut microbiome in a rat model of superimposed preeclampsia to characterize the microbial signature associated with defective placentation processes identified at the preclinical disease stage. The blood pressure profile, renal function parameters and fetal phenotype were evaluated in pregnant Stroke-prone Spontaneously Hypertensive Rats (SHRSP) and their normotensive controls.
View Article and Find Full Text PDFSci Rep
December 2024
Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France.
Sex steroids influence early organization of neural structures involved in expression of sexual behavior. A critical perinatal period during which testosterone surges occur has been identified in male rodents. Data are lacking for females, whose ovarian activity starts later in the postnatal period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!