When the immune system responds to tumour development, patterns of immune infiltrates emerge, highlighted by the expression of immune checkpoint-related molecules such as PDL1 on the surface of cancer cells. Such spatial heterogeneity carries information on intrinsic characteristics of the tumour lesion for individual patients, and thus is a potential source for biomarkers for anti-tumour therapeutics. We developed a systems biology multiscale agent-based model to capture the interactions between immune cells and cancer cells, and analysed the emergent global behaviour during tumour development and immunotherapy. Using this model, we are able to reproduce temporal dynamics of cytotoxic T cells and cancer cells during tumour progression, as well as three-dimensional spatial distributions of these cells. By varying the characteristics of the neoantigen profile of individual patients, such as mutational burden and antigen strength, a spectrum of pretreatment spatial patterns of PDL1 expression is generated in our simulations, resembling immuno-architectures obtained via immunohistochemistry from patient biopsies. By correlating these spatial characteristics with treatment results using immune checkpoint inhibitors, the model provides a framework for use to predict treatment/biomarker combinations in different cancer types based on cancer-specific experimental data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636269PMC
http://dx.doi.org/10.1098/rsif.2017.0320DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
multiscale agent-based
8
agent-based model
8
tumour development
8
individual patients
8
cells cancer
8
immune
6
cells
6
tumour
5
computational multiscale
4

Similar Publications

Concomitant Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma and Non-Immunoglobulin M Plasma Cell Neoplasm.

Arch Pathol Lab Med

January 2025

the Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles (Petersen, Stuart, He, Ju, Ghezavati, Siddiqi, Wang).

Context.—: The co-occurrence of plasma cell neoplasm (PCN) and lymphoplasmacytic lymphoma (LPL) is rare, and their clonal relationship remains unclear.

Objective.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.

View Article and Find Full Text PDF

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!