Background: There is little information regarding the duck enteritis virus (DEV) US10 gene and its molecular characterization.
Methods: Duck enteritis virus US10 was amplified and cloned into the recombinant vector pET32a(+). The recombinant US10 protein was expressed in Escherichia coli BL21 cells and used to immunize rabbits for the preparation of polyclonal antibodies. The harvested rabbit antiserum against DEV US10 was detected and analyzed by agar immunodiffusion. Using this antibody, western blotting and indirect immunofluorescence analysis were used to analyze the expression level and subcellular localization of US10 in infected cells at different time points. Quantitative reverse-transcription PCR (qRT-PCR) and pharmacological inhibition tests were used to ascertain the kinetic class of the US10 gene. A mass spectrometry-based strategy was used to identify US10 in purified DEV virions and quantify its abundance.
Results: The recombinant pET32a(+)/US10 protein was expressed as inclusion bodies, purified by gradient urea washing, and used to prepare specific antibodies. The results of qRT-PCR, western blotting, and pharmacological inhibition tests revealed that US10 is mainly transcribed in the late stage of viral replication. However, the presence of the DNA polymerase inhibitor ganciclovir and the protein synthesis inhibitor cycloheximide blocked transcription. Therefore, US10 is a γ2 (true late) gene. Indirect immunofluorescence analysis showed that US10 proteins were initially diffusely distributed throughout the cytoplasm, but with the passage of time, they gradually relocated to a perinuclear region. The US10 protein was detected in purified DEV virions by mass spectrometry, but was not detected by western blotting, indicating that DEV US10 is a minor virion protein.
Conclusions: The DEV US10 gene is a γ2 gene and the US10 protein is localized in the perinuclear region. DEV US10 is a virion component.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607491 | PMC |
http://dx.doi.org/10.1186/s12985-017-0841-2 | DOI Listing |
Dev Cogn Neurosci
August 2021
Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Electronic address:
Default mode network (DMN) dysfunction is theorized to play a role in attention lapses and task errors in children with attention-deficit/hyperactivity disorder (ADHD). In ADHD, the DMN is hyperconnected to task-relevant networks, and both increased functional connectivity and reduced activation are related to poor task performance. The current study extends existing literature by considering interactions between the DMN and task-relevant networks from a brain network perspective and by assessing how these interactions relate to response control.
View Article and Find Full Text PDFSci Rep
November 2018
Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
To investigate the function of the duck enteritis virus (DEV) tegument protein US10, we generated US10 deletion and revertant mutants (ΔUS10 and US10FRT) via two-step RED recombination based on an infectious BAC clone of DEV CHv-BAC-G (BAC-G). In multistep growth kinetic analyses, ΔUS10 showed an approximately 100-fold reduction in viral titer, while the genome copies decreased only 4-fold compared to those of BAC-G. In one-step growth kinetic analyses, there were no significant differences in genome copies among BAC-G, ΔUS10 and US10FRT, but ΔUS10 still showed a 5- to 20-fold reduction in viral titer, and the replication defect of ΔUS10 was partially reversed by infection of US10-expressing cells.
View Article and Find Full Text PDFVirol J
September 2017
Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
Background: There is little information regarding the duck enteritis virus (DEV) US10 gene and its molecular characterization.
Methods: Duck enteritis virus US10 was amplified and cloned into the recombinant vector pET32a(+). The recombinant US10 protein was expressed in Escherichia coli BL21 cells and used to immunize rabbits for the preparation of polyclonal antibodies.
Virus Genes
April 2014
Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, Haidian, People's Republic of China,
Here, we present the complete genomic sequence of the Chinese standard challenge strain (CSC) of duck enteritis virus (DEV), which was isolated in China in 1962. The DEV CSC genome is 162,131 bp long and contains 78 predicted open reading frames (ORFs). Comparison of the genomic sequences of DEV CSC and DEV live vaccine strain K at passage 63 (DEV K p63) revealed that the DEV CSC genome is 4,040 bp longer than the DEV K p63 genome, mainly because of 3,513-bp and 528-bp insertions at the 5' and 3' ends of the unique long segment, respectively.
View Article and Find Full Text PDFVirus Res
September 2011
Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, Haus 18, 10115 Berlin, Germany.
We here report the complete genome sequence of the duck enteritis virus (DEV) wild-type strain 2085, an avian herpesvirus (GenBank ID: JF999965). The nucleotide sequence was derived from the 2085 genome cloned as an infectious bacterial artificial chromosome (BAC) clone. The DEV 2085 genome is 160,649-bp in length and encodes 78 predicted open reading frames (ORFs), a number identical to that identified for the attenuated DEV VAC strain (GenBank ID: EU082088.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!