Over the last decade it has become increasingly clear that Zetaproteobacteria are widespread in hydrothermal systems and that they contribute to the biogeochemical cycling of iron in these environments. However, how chemical factors control the distribution of Zetaproteobacteria and their co-occurring taxa remains elusive. Here we analysed iron mats from the Troll Wall Vent Field (TWVF) located at the Arctic Mid-Ocean Ridge (AMOR) in the Norwegian-Greenland Sea. The samples were taken at increasing distances from high-temperature venting chimneys towards areas with ultraslow low-temperature venting, encompassing a large variety in geochemical settings. Electron microscopy revealed the presence of biogenic iron stalks in all samples. Using 16S rRNA gene sequence profiling we found that relative abundances of Zetaproteobacteria in the iron mats varied from 0.2 to 37.9%. Biogeographic analyses of Zetaproteobacteria, using the ZetaHunter software, revealed the presence of ZetaOtus 1, 2 and 9, supporting the view that they are cosmopolitan. Relative abundances of co-occurring taxa, including Thaumarchaeota, Euryarchaeota and Proteobacteria, also varied substantially. From our results, combined with results from previous microbiological and geochemical analyses of the TWVF, we infer that the distribution of Zetaproteobacteria is connected to fluid-flow patterns and, ultimately, variations in chemical energy landscapes. Moreover, we provide evidence for iron-oxidizing members of Gallionellaceae being widespread in TWVF iron mats, albeit at low relative abundances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607188 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185008 | PLOS |
Membranes (Basel)
August 2024
Laboratorio de Polímeros y Materiales Compuestos, Instituto de Física de Buenos Aires-CONICET (IFIBA), Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the effect of relative humidity (RH) within the electrospinning chamber on the morphology of the resulting mats and how this affected the flow dynamics depending on whether or not the permeating liquid induced swelling in the membranes.
View Article and Find Full Text PDFPeerJ
September 2024
Department of Biology, Western Washington University, Bellingham, WA, United States.
The microbiota of hydrothermal vents has been widely implicated in the dynamics of oceanic biogeochemical cycling. Lithotrophic organisms utilize reduced chemicals in the vent effluent for energy, which fuels carbon fixation, and their metabolic byproducts can then support higher trophic levels and high-biomass ecosystems. However, despite the important role these microorganisms play in our oceans, they are difficult to study.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2024
Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning.
View Article and Find Full Text PDFToxins (Basel)
July 2024
Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia.
Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and niches remain underexplored.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2024
Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!