This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752230 | PMC |
http://dx.doi.org/10.3791/56154 | DOI Listing |
J Phys Chem Lett
January 2025
DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.
View Article and Find Full Text PDFJ Prosthodont
January 2025
Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Lagoa Nova, Natal, Brazil.
Purpose: To assess the impact of staining and multiple firings on the mechanical, optical, and surface characteristics of zirconia-containing lithium silicate ceramics (ZLS).
Materials And Methods: Ninety ZLS discs (Suprinity, VITA Zahnfabrick) were divided according to the "Number of firings" protocol: Ctr-control, no characterization; SC-single firing cycle (for characterization, crystallization and staining simultaneously); and DC-double firing cycle (crystallization firing cycle was performed separately from the staining firing). Extrinsic pigmentation was performed to replicate the characterization of a monolithic restoration.
J Conserv Dent Endod
November 2024
Department of Metallurgical and Materials Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, India.
Objective: The present study aimed to evaluate the phase transformation behavior and elemental analysis of thermomechanical-treated nickel-titanium (NiTi) rotary instruments, TruNatomy (Dentsply Sirona), HyFlex CM (coltene, Whaledent), and Neoendo Flex (Orikam healthcare India), using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry.
Materials And Methods: A total of 18 NiTi rotary instruments, TruNatomy, Hyflex CM, Neoendo Flex, taper. 04, size 25 (except TruNatomy, size 26) were selected and were divided into three groups ( = 6).
IUCrdata
December 2024
E-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA.
A layered cobalt coordination polymer containing both 4-(2-carboxyl-atoeth-yl)benzoate (ceb) and 1,4-bis-(3-pyridyl-meth-yl)piperazine (3-bpmp) ligands, [Co(CHO)(CHN)(HO)] or [Co(ceb)(3-bpmp)(HO)] , was isolated and structurally characterized by single-crystal X-ray diffraction. Chain-like [Co(ceb)(HO)] units are oriented parallel to [101]. These are connected into (4,4)-grid coordination polymer layers by tethering 3-bpmp ligands.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
Self-assembled gold nanoparticles (Au-NPs) possess distinctive properties that are highly desirable in diverse nanotechnological applications. This study meticulously explores the size-dependent behavior of Au-NPs under an electric field, specifically focusing on sizes ranging from 5 to 40 nm, and their subsequent assembly into 2D monolayers on an n-type silicon substrate. The primary objective is to refine the assembly process and augment the functional characteristics of the resultant nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!