The presence of pharmaceutically active compounds in aquatic environments has become a major concern over the past 20years. Elucidation of their mode of action and effects in non-target organisms is thus now a major ecotoxicological challenge. Diclofenac (DCF) is among the pharmaceutical compounds of interest based on its inclusion in the European Union Water Framework Directive Watch List. In this study, our goal was to investigate the potential of a metabolomic approach to acquire information without any a priori hypothesis about diclofenac effects on marine mussels. For this purpose, mussel's profiles were generated by liquid chromatography combined with high resolution mass spectrometry. Two main metabolic pathways were found to be impacted by diclofenac exposure. The tyrosine metabolism was mostly down-modulated and the tryptophan metabolism was mostly up-modulated following exposure. To our knowledge, such DCF effects on mussels have never been described despite being of concern for these organisms: catecholamines and serotonin may be involved in osmoregulation, and in gamete release in mollusks. Our results suggest potential impairment of mussel osmoregulation and reproduction following a DCF exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.09.146DOI Listing

Publication Analysis

Top Keywords

diclofenac exposure
8
osmoregulation reproduction
8
effects
5
metabolomics assessment
4
assessment effects
4
diclofenac
4
effects diclofenac
4
exposure
4
exposure mytilus
4
mytilus galloprovincialis
4

Similar Publications

The use of cannabis-related products is currently experiencing extraordinary growth in popularity in the European and US markets. A wide variety of cannabis-related products have emerged, including oils, tinctures, edibles, topicals, cosmetics, and even beverages and sweets, offering the purported medical benefits without the psychoactive effects associated with Cannabis sativa. However, there is a significant gap in our understanding of bioaccumulation processes and their long-term effects, particularly as cannabinoids are highly lipophilic molecules.

View Article and Find Full Text PDF

The research used bacterial biosensors containing bacterial luciferase genes to monitor changes in the environment in real-time. In this work to express four different gene constructs: recA:luxCDABE, soxS:luxCDABE, micF:luxCDABE, and rpoB:luxCDABE in Escherichia coli SM lux biosensor after exposure to three different antibiotics (nalidixic acid, ampicillin, kanamycin) and diclofenac was determined. It was found that incubation of the E.

View Article and Find Full Text PDF

Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method.

View Article and Find Full Text PDF

and diclofenac: understanding the potential risks of this association.

Front Vet Sci

December 2024

Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.

In many homes worldwide, dogs are considered part of the family. Every possible care is given to animals, including drug treatments. However, many animal guardians, in an attempt to minimize pain or improve the quality of life of their dogs, provide drugs without a veterinarian's prescription.

View Article and Find Full Text PDF

Importance: Gestational exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of adverse fetal kidney outcomes. However, details regarding timing, specific NSAIDs, and long-term childhood kidney outcomes are limited.

Objective: To evaluate the association between gestational exposure to NSAIDs and the risk of chronic kidney disease (CKD) in childhood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!