Ultrasensitive Quantitation of Plasma Membrane Proteins via isRTA.

Anal Chem

State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China.

Published: October 2017

Quantitation of plasma membrane proteins (PMPs) is fundamental and frequently performed daily in the lab. However, challenged by the inherent/interacting heterostructures and complex surroundings of the PMPs in lipid membrane, quantitative techniques for PMP often require complex treatments (e.g., labeling, isolation, purification, and determination), and the sensitivity is usually not satisfactory. To address this problem, we have proposed a novel method that enables quantitation of PMPs with extremely high sensitivity, in an easier-to-manipulate and more streamlined way. This method is based on the design of an in situ rolling cycling replication-templated amplification strategy (isRTA). In fact, two rounds of DNA cascade isothermal amplifications have been conducted. The first round of amplification can provide templates for the second round of amplification; thus, significant enhancement of quantitative signals can be achieved. In this way, PMPs are quantified with ultrahigh sensitivity; as few as 25 copies of PMPs can be detected per cell. Moreover, the advantages of isRTA have been demonstrated by simultaneous identification of several PMP biomarkers (MUC1, EpCAM, and HER2) that are expressed over a wide distribution range on breast cancer cells. The precise typing of breast cancer cell subsets is thus possible because of the "quantitative-to-qualitative" strategy. Therefore, the unprecedented sensitivity and high usability of the isRTA method may present significant prospects for delving into membrane proteins and their related biofunctions in many research fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b02025DOI Listing

Publication Analysis

Top Keywords

membrane proteins
12
quantitation plasma
8
plasma membrane
8
round amplification
8
breast cancer
8
pmps
5
ultrasensitive quantitation
4
membrane
4
isrta
4
proteins isrta
4

Similar Publications

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!